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General expressions are derived for the correlation coefficients between 
the length of an opening and that of the nth subsequent opening for a 
single ion channel. Analogous results are given for the correlation between 
shut times, and between an open time and subsequent shut times. An 
alternative derivation of the results of Fredkin et al. (in Proc. Rprkelpy 
Conf. in honor qf Ncyman B Kiqfw, vol. 1, pp. 26W289 (1985)) is given, 
and their rcbsults are extended to the case where openings occur in bursts. 
Expressions are given for the correlation between the first and nth 
opening in a burst, between the lengths of bursts, and between the 
number of openings per burst. Each of these sorts of correlation can give 
information about the connections that exist between the various states 
of the system; interpretations of the correlations are discussed. 

Expressions are derived for the distributions of the nth open time, 
shut time, burst length, etc. following the application of a perturbation 
(e.g. a voltage jump or a concentration jump). It is shown that these 
distributions will all be the same (namely the equilibrium distribution) 
only in the case where the openings, burst lengths, etc. are not correlated. 

Certain reaction schemes predict a component in the distribution of the 
number of openings per burst that  has a unit mean (i.e. a component of 
isolated single openings). For some schemes this component is predicted 
to have zero amplitude, in principle, whereas in others i t  may be quite 
prominent. The presence or absence of this component can give infor- 
mation about the way in which the various states of the system are 
connected. The interpretation in terms of mechanism is discussed. 

The interpretation of observations of single ion channel currents has, as one of its 
major goals, the establishment of a qualitative reaction mechanism for the opening 
and shutting of the ion channel. Once this has been established i t  will then usually 
be possible to estimate rate constants for a t  least some of the transitions that are 
involved in the mechanism. I t  has recently been shown by Fredkin ~t al. (1985) 
that observations on correlations between successive open times can give impor- 
tant information concerning the number of routes by which the various states of 
the system can interconvert. Such measurements have been used as an aid to 
interpretation of experimental results by Jackson p i  al. (1983), Labarca et al. 
(1985), McManus et al. (1985) and Colquhoun & Sakmann (1985). 



It is our aim in this paper (a) to provide explicit general equations by means 
of which the magnitude of correlations that are predicted by any specific 
mechanism may be calculated, for comparison with experimental measurements, 
( h )  to provide an alternative proof of the theorem of Fredkin et al. (198s) concerning 
the decay of such correlations, (c) to extend the results of Fredkin et al. (198s) to 
correlations within and between bursts of openings and (d) to discuss thc 
distributions to be expected after a perturbation (e.g. a voltage jump), the form 
of which depends on the presence or absmce of correlations. 

We shall also discuss the inferences that can be made from the presence or 
absence of a component with mar-unit mean in the distribution of the number of 
openings per burst. The observation of such a component can give information 
about the connections between states which is differmt from, though related to, 
that infcrred from correlations. 

We shall assume throughout that  the reaction mechanism can be described as 
a Markov process (Colquhoun & Hawkes 1977, 1981, 1982, 1983 ; Fredkin et al. 

198s). 

The origin of correlatio.rbs 

The Markov assumption implies that  if the system is in a spec,ified state a t  time 
t ,  the future evolution of the system is independent of what happened before t .  The 
lifetimes of sojourns in individual states are therefore independent of each other, 
and are thus uncorrelated. Correlations can, however, arise in the experimental 
observations when, as is usually the case, i t  is not possible to distinguish all of the 
individual states of the system by looking a t  the record. 

Consider, for example, scheme 1 in figure 1. This scheme has three shut states 
that are experimentally indistinguishable, and two open states that are supposed 
to have equal conductance so that they too are experimentally indistinguishable. 
The experimental record would show only whether the channel was 'open' (in 
either of the open states) or 'shut'  (in one of the three shut states). Suppose further 
that the mean lifetime of sojourns in open state 1 is shorter than that in open state 
2, and that  transitions between shut states 3 and 4, and between open states 1 
and 2, are rather slow. Tn this case an opening that starts with a 3 + 2  transition 
is likely to be followed by several more 2 > 3  + 2  transitions (so several 'long' 
openings would occur in succession), before a 3  t 4 transition. Onve in state 4 there 
would then be several 4+ 1 +4 transitions, which would give rise to several 'short ' 
openings in succession. Thus a short opening would tend to he followed by another 
short opening (and a long opening by another long opening), so there would he 
a positive correlation between successive open times. If there were few 2  >3-2 2 
and 4+ 1 +4 oscillations (e.g. if B + 4 transitions were rapid) there would be little 
cwrrelation between open times ; the cwrrelation arises essentially from 'bursting ' 
behaviour. It may be noted here that two separate and independent channels with 
different bursting  characteristic*^ may give rise to correlations, even when neither 
alone would show correlations. 
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4 5 
FIGURE l. Examples of possible connections Between open (d) states and shut (,F) states (see 

text). The number of each individual state is shown as a subscript. A line joining two states 
indicates that reversible transitions between the states are possible. Note that  the existence 
or nonexistence of' connections within d states, and within .F states, is irrelevant to the 
determination of the form of correlations; only connections between d and 4 matter. 

Correlations can arise only if there are a t  least two experimentally indistinguish- 
able shut states and two indistinguishable open states. As Fredkin ~t al. (1985)  
pointed out, the appearance of a correlation will depend on the routes that  exist 
for transitions between states. For example, scheme 2 in figure l is the same as 
1 except for the routes between states. But no correlations can occur in 2 because 
every opening must start with the same (3 + 2) transition; what happens after this 
transition must be independent of what happened before it. 

Notation 

The notation used here will be the same as that in Colquhoun & Hawkes (1g82) ,  
to which reference should be made for details. 

The k states in which the system can exist will be divided into a subset d that 
contains k,, open states, and a subset 5 that contains the remaining kF shut states. 
The individual open states (the members of the set d) will be denoted by roman 
letters as A,, A,, etc., the individual open states being distinguished by the 
subscripts. Similar notation is used for the members of other sets. For t h ~  analysis 
of bursts of openings the shut states will be divided further into subsets 
(short-lived shut states, kg in number, that constitute gaps within bursts), and W ,  
which contain longer lived shut states (kW in number) such that  any entry into W 
is deemed to end the burst and hence to generate a gap between bursts. Thus 
5 = U U U and d., = k,+ kW. Finally, we define the subset &, which contains both 
d and 28 states, the states in which the system resides during a burst of openings, 
so & = a2 U U contains k8 = k,& + k, states. 
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Thc rnatrix of'transition rates between states will be denoted Q, and partitioned 
sevtions of it as Q,,, Q,,, etc.. Ihpressions of the following type (which are 
discussed fillly by (hlquhoun &, Hawkes I 982) will ocww frequently. 

P,,(t) = eQddt, 
its 1,aplac.e transform (1.1) 

P$,(s) = ( S -  Q,-,)-l, (1.2) 

and the transition prob:rbility matrix G*,q(0) for transitions from open to shut 
states, whivh will be denoted simply as given by 

Rank and sp~ctral expansion 

The following definitions are givm, for example, in Mirsky (1955). The rank of 
a matrix is tho number of 1inc:arly indcpentlent rows (or oolumns) that i t  contains; 
alternatively, the rank is the maximum value of .r for which therc exists (after 
permutation of rows and columns if necessary) an r X r submatrix with a non-zero 
determinant. The rank of any matrix Xwill be denoted fZ(X). Tf Xis  a k X lc matrix 
then /c-R(X) is called the nullity of' X. The number of zero eigenvalues that X 
has will usually bc equal to its nullity (particular values of the rate constants could 
give more zero eigenvalues, but such particular oases are not of great int,ercst in 
practice). Thus a non-singular matrix (i.e. one with a non-zero determinant) must 
have full rank ( & ( X )  = /c, nullity = zero). Even when there are several zero 
eigenvalues, the conventional spectral expansion, 

will usually be valid. Here the h, represent the eigenvalucs of X, and the matrices 
A, can be calcu1atc:d from the c:igcnvec+tors of X as 

A, = c ,  r , ,  rtc, = 1 ,2 ,  . . .  , k ,  (l .6) 

wherc. c, is the columil eigenvector of X defined by (h, I- X) c, = 0 antl r, is 
the row cigenvector of'X defined by r,(h, I- X )  = 0. The cigcnvecdmrs are waled 
so that  the matrix with r, as its rows is the inverse of the matrix with c, as its 
columns so that C A, = I. The A matrices also have the fbllowing properties (see, 
for example, Colynhonn & Hawkes 1977). 

I t  will bc convenient to definc here, for later usc, three frequentJy used 
probability transition matrices. First, we define as X.&,, the prohability transition 
matrix that represents t,ransitions from the start of one opening to the start of the 
ncxt o yelling, narncly 

X,,, = G,, G,,&. (1.8) 

The i,<jth element of Xdd  gives thc probability, given that :m opening starts in open 
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state i, that, after oscillation among tlhc open states, followed by shutting and 
subsequent oscillation among the shut states, the channel evcntually reopens to 
the open statle j. Since the channel must evcntually reach one of the open states 
the row sums of X,., (like thosc of G,,,, and of GS,,) arc unitly, so 

where U,, represcnts a (k., X l )  column vector with unit clements. 
Secondly, we may define a matrix, H,.,, that tlesoribes transitions from the start 

of an opening to the start of the next opening in the same bwrst, namely 

H,, = G.,, G,,,. (1 .SO) 

Unlike the other cases this will not have unit row sums because it does not describe 
all possible routes from the start of one opening to the start of thc ncxt , it excludes 
routes via the %? states. 

Thirdly, we may simila~ly define (as in Colquhoun & Hawkes 1982, equations 
3.88 and 5.6-5.7), for channels that  show bursting behaviour, a matrix for 
transition from the start of an opening to the first arrival (possibly via 98) in a 
%? state, namely 

G,(@), = (I-G,@ Ga,)-YG,%9 G,e+G,wL (1.11) 

and, for the transition from the start of a sojourn in %? to the next opening, we 
define 

G,(,)., = (I- G,, G.%9,) - l (Ge,%9 G,%9, + +v.,). (1.12) 

Bccause a gap between bursts is characterized by a t  least one sojourn in V, we 
can define an analogue of (1.8) that  describes transitions from the start of one burst 
of openings to the start of tlhe next burst as 

The first of these definitions follows directly from the descriptions of the routes 
from the start of one burst to the start of the ncxt in (1.11) and ( l .  12), the second 
version follows from the results in Colquhoun & Hawkes (1982). The third version 
refers to the d V  subscc4ion (i.e. the first k, rows) of G,,, and the %?d subsection 
(i.e. the last k, rows) of G,,,, and describes in an intuitively elegant way the 
transition from burst (8) states, starting in d, to V states followed by transition 
from shut states (F), starting in V, back to d. 

The matrices in (1. l l)-(l. 13) all have, by a similar argument to that  uscd above 
for X,,, unit row sums, i.e. 

llank, the number of routes between subsets, cznd connectivity 

Open and shut subsets 

Consider X,,., = Q.25 Q,,,F Q~F,& QeFFd, which is the probability transition 
matrix for transition from open statm, via shut states, back to open. The rank of 
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will be the same as that for QdBF (bcoause the fbrnler is found by multiplying 
the lattcr by the non-singular matrix - Q,;,>). 'I'hc ranks of Q,&,, and Q:,,& (which 
tlcscribe the samc S-F routes but in oppositc directions) wi!l usually bc equal, 
and X&,& will usually also have this samc rank. The former assertion can be 
illustratcd by considering the following hypothetical cxample which could apply 
to thc sohcme 3 in figure l .  The numbers on tlhc borders of the matrix represent, 
the state numbers, as shown in figurc 1 

In  t,his case both have rank 2, which is thc maximum possible value, k,, (hecause 
the rank of a matrix cannot be larger than thc number of rows or colurnns, 
whichever is the least). Yarticu1:tr numerical values could cause exceptions to this 
rule. If' the top lefi-hand clcmcnt in Q~,~F was 20 rather than 200 then tlhe first, 
row of Q,,,, would bc exactly twice the second row (and thc tleterrni~mnt of the 
leftmost 2 X 2 section of it would he zcro) so the rank of Q~,,, would bc: reduced 
to 1. Such numerical coincidences are ncvcr likely t,o be cxactly true in physical 
rcality (though they could, of course, be :tpproximat,ely true). Thc tcrrn usualby 
is uscd here to indicate what will happen if' thc possibility of such numerical 
coincidences is neglected. 

I t  may also bc noted that  in Q,,,- in (1.15) thcre is a colurnn of zeros because 
shut ~ t ~ a t e  5 cannot commur1ic::tt.e directJy wit,h eithcr of the opcn statcs (figure l c). 
Therc is a corresponding row of zeros in Q,,,,. In general, rows or c:olurnns of zeros 
will appear in Q,,.& in the same position that t,hey would in the tmnsposc of Q,,,, 
and the prescncc of :t row or colunin of zeros will reducc the rank of a matrix by 
one. (The rank of Q , , ,  in (1 .lO) cannot hc larger than k ~ ,  = 2, so as long as it has 
tlwo non-zero rows or columns it will usu:tlly have this maximum rank.) For 
example, the scheme 2 in figure 1, in which thc only shutting routc is 2 + 3, might 
h:tvc 3 4 5 

r i  I his has two zero oolumns and one non-zero colurnn so it,s rank is 1 .  The same can 
bc concluded from t,he fact that it has a zero row. Put anotlhcr way, thc r:tnlz cim 
usually be found :ts the minimum numbcr of rows (and/or columns) that must be 
delctcd to leave only zeros undeleted; e.g. the first two columns in Q,&,,- in (1.15), 
and tlhe bottom row (or tlhe leftmost column) in (1.16). 

The fact that (1.15) has rank 2 evidently corrr:sponds to the fact that both of' 
the two open statcs can communicate directly wit,h different shut statcs in 
scherne 3 of figure 1 (as is also true in scheme l ) ,  whereas (1.16) has rank 1 hec:tuse 
thcrc is only one rout,e from open to shut states in scheme 2. In  schernc 4 both 
open statcs communicate with 9, but they both communicate with the same shut 
state (statc 3) so Q&,' has rank 1. I n  schernc 5 M(Q,,,,) = l :tlso, for similar 
rcasons. I n  both c::tscs the channel must pass through a single statc r,.n route from 
.G# to F. 
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Generalization of such arguments leads to the following conclusions (Fredkin 
et al. 1985). The rank of Qd9,  Q,-,, and of X,,,,, will usually be cyual to whivhever 
is the lcsser of thc following. (a) the number of different open states via which it 
is possiblc to leavc d for the shut states (F), (h) thc number of diffcmnt shut states 
via which it is possible to leave .F for the open statcs ( d ) .  Let this numbcr be 
dcnoted C. Thus &(X,,,,) C (usually the equality sign will hold). For example 
we have C = m i n ( 2 , 2 ) = 2  in 1 (figure l ) ;  C = m i n ( l , 1 ) = 1  in 2; C'=min 
( 2 , 2 ) = 2  in 3 ,  C = m i n ( 2 , 1 ) = 1  in 4 and C = m i n ( l , 2 ) = 1  in 5. When 
R(Xdd) = 1 therc will be no cwrrclation between open times (see Frcdkin et a1 I 985, 
and below). The number C can also be defined as the minimum number of states 
that  must be deleted in order to separate cwmpletcly the open states from the shut 
states (so that when the cwrrcsponding rows and/or cdumns :tw deleted from Q&,-, 
only zeros remain, as descaribcd abovc). 

Relation to graph theory 

'I'hc term state corresponds to thc term vertex (or node) as used in graph theory, 
and the term connection (ix. a routc for transition between two states) corresponds 
to edge in graph theory. The discussion abovc can now be made more rigorous (sce, 
for cxample, Tainiter 1975). ltegard .d, ,F as sets of vertices of:& graph. Define 
the vertex connectivity of d and F as thc minimum number of vertices whose 
removal disconnects d from F (note that removal of a vertex implies removal 
of the edges that are incident upon it). Denote this number by CV(&, , F ) ;  it is 
clcarly thc same :ts thc number C dcfincd above, and will be referred to hereinaftcr 
simply as the connec;ti&j. We may also dcfinc (for usc, partic:ularly, in $ 7 )  a gateway 
state between d and F as any vertex (state) whose removal reduces CV(,d, B). 
Clearly the number of gateway states will often bc grcatcr than the connectivity. 
For example, in 1 and 3 the connectivity, C V ( d ,  F) = 2 (and the rank of X.&,, will 
usually be 2), but states l ,  2, 3 and 4 arc all gateway states. In  2, 4 and 5 the 
connectivity (and the rank of X,,,&) is unity, but in 2 there are two gateway statcs 
(states 2 and 3), whereas in 4 there is only one gateway state (state 3), as is also 
the case in 5 (statc 2). 

Burst rnechan,isrns 

In  this case the shut states are subdivided into short-livcd shut states (subset &l) 
and long-lived shut states (subset $7). Arguments similar to those used above can 
be applied to Hdd = G,,,1 G1,,,, which describc routcs from .r$ to a and back. Thc 
rank of H&,,, will usually bc thc same as that o ~ Q , , , , ~ ,  and of Q1,,,. The connectivity 
betwcen & and B, CV(,d, a), can bc defined exactly as :tbovc, as can a gateway 
state betwcen ,d and B. Notc, however, that this definition will include indirect 
routes (via W states) between S! and g. For example, in scheme 20 of figure 2 there 
is no direct route (sce below) bctwecn d and W, but CV(&, W) = 1 because therc 
is an indirect route via state B, (which is the one d-$7 gatcway state in this oasc). 
This definition will be useful in the interprctation of correlations bctwcen bursts 
because the rank of Zd,,, cannot be greater than, and will usually bc cyual to, 
CP'(d,%) (sec (1.13) and $4). 

I n  other c::tses, however, we will bc intercstcd only in direct routcs betwecn two 
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l , ,  A,  0 I I I 1 0 

1,' 
133-A2 

k'rar~ss 2. For description see opposite 
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subsets of states. For example, when considering correlations within bursts we are 
interested only in direct transitions between d and B (any entry into a state 
would signal the end of the burst). We therefore define the direct vertex con,n,~ctivity 
of d and a, as the minimum number of states deletion of which removes all direct 
connections between d and B (so the states removed belong to  either .d or B, 
but not g ) .  This number will be denoted IP(&, B), and will be referred to hereafter 
as the direct connectivity between .d and B .  It will usually be the same as the 
rank of H.,.,. Similarly a direct gatpway statet b~ tween  d and can be defined as 
a state the removal of which reduces DV(&, B) .  For example, schemes 1 and 3 in 
figure 2 both have L)"(,d,  B) = 1 (which is the rank of in scheme 1 states 
1 and 3 are both direct d-.43 gateway states, but in scheme 3 only state 3 is a direct 
d-B gateway state. A more complex example is provided by schemes 22 and 23 
in figure 2;  the direct d-B connectivity (and, usually, the rank of H,,) is two 
in both schemes, but the direct .d-B gateway states are states 1 and 3 in scheme 
22, and states 2, 4 and 6 in scheme 23. 

Two general results 

The rank of the product of a n y  two matrices, X and Y say, obeys the relation 

R(XY) min [ R ( X ) ,  R(Y)1. (1.17) 

I n  the cases above, in which X and Y described the same routes (but in opposite 
directions) the equality sign will usually be correct in (1.17), but this will not 

t I n  terms of graph theory we would define a minimal  d-B vertex cutset as a set of vertices, 
(,?'(d, B )  in number, deletion of which disconnects d and B ;  so a gateway state between d 
and B is a vertex which belongs to  some minimal d-B vertex cutset. Similarly, a direct miniwud 
.&-g vertex cutset is a set of vertices, I I v ( d ,  B) in number, deletion of which removes direct 
connections between d and B ,  and a direct gateway state  between d and B is a one tha t  belongs 
t o  some such cutset. For example, in figure 2, scheme 20, U V ( d ,  B) = 2 = R(H,,,,), and the 
minimal direct .&-B vertex cutsets are {A,, A,}, {A,, R,), {A,, R,) and {B,, B,}, so A,, A,, R, 
and R, are all direct gateway states between d and B. 

BIGURI~: 2. A selection of hypothetical mechanisms for which openings occur in bursts. There 
is, of course, no suggestion tha t  the more exotic schemes describe any real ion channel ; they 
are shown merely t o  illustrate the principles in the text. The individual states are denoted 
A, B, C; they are the members of subsets, d (open), B (brief shut) and V (long-lived shut),  
respectively. individual states are given numbers (shown as  subscripts), for reference in the 
text. 

The ranks of various probability transition matrices are shown. The ranks of Q,,, and 
Q ,  indicate the direct connectivity between d and W, and between B and W ,  respectively. 
The rank of H,& is the same as  tha t  of Q,,, and the rank of X&,, is the same as  tha t  
of Q,,,. When the rank of H.d, or Z,,,, is unity there will be no correlations 
respectively, between openings, within bursts, and between bursts. 

The last column shows whether or not a component with unit mean is expected t o  be 
present in the distribution of the number of openings per burst. The symbol 0 indicates the 
absence of such a component (i.e. cases where it  has zero area), * indicates its presence, 
and - indicates tha t  there is no such component (which is the case when R(H,d.d) = k,, 
so H,, has no zero eigenvalues). 

The schemes are all shown with connections between the individual states within each 
set (e.g. between the individual open states), bu t  the presence or absence of such connections 
does not affect whether or not correlations, or a finite area (last column), will be seen. 
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always be true in other cases (set:, for example, the case discussed a t  the end ol' 
$4). Other general results are 

but we cannot say that the equality sign in (1.18) will usually be correct in any 
of the oases that occur in this work. 

Dyfinition of the nutocorrelation coqficient 

The correlation cwefficient for any quantities X, ,  X, is defined as 

cov (X,, X,) 
[)(X,, X,) = -- 

I var (X,) var (X,) 1; 

where we define the means as 

,UI = &(X,), ,/L, = &(X,). 

When X, and X, have the same mean (p, say) and variance (8, say) 

The expectations that are needed for the evaluation of this expression can be 
found from the Laplace transform, p ( s , ,  S,), of the joint distribution of X,, z, from 
the general expression 

E(X: XF) = ( - i a,,, jysl, ~ , ) / a q  a s ~ l  (1.21) 

The following particwlar results will he needed frequently 

- 4 8 1 -  Q,,)-l/dsls=o = Q~;.>, (1 22)  

and d2(sI- Q,,,d)-1/ds21,=o = 2Q25. (1.23) 

(hlculation of equilibrium occupan,ci~s 

The probability that  the system is in each of its k statcs a t  t:quilibrium (the 
fraction in each state a t  eyuilibrium) will be denoted 

For any specified reaction scheme these occupancies can easily bt: found by 
inspection, from the law of mass action. For the purposes of writing a general 
computer program it  is convenient to have a general method of finding p ( ~ )  
directly from any specified Q matrix; in any such algorithm care must be taken 
to avoid division by rate constants that happen to be zero. A method we have found 
useful is to calculate 

pj(co) = d,/l), j = 1 , 2 , .  ..,L, (1.26) 
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and d j  represents the determinant of the matrix found by deleting thejth row and 
j th column of Q (i.e. thejth principal minor of order k- 1 of Q)  ; this is the cofactor 
of qji. (We are grateful to the late H. Kestelman for proving 1.25.) We may also 
note that D is equal to the product of the k -  l non-zero eigenvalues of Q. 
Alternatively p(co) can be found either as r ,  (see 1.6, and Colyuhoun & Hawkes 
1977)~ or by normalizing (to unit sum) any row of the adjoint matrix adj (Q), 
beoausc Q is singular and p ( m )  Q = 0 a t  equilibrium. 

Experimen,tal d<ficulties in the measurement of correlation, 

There are two main problems in practice. Firstly it is usually not possible to be 
sure that  recordings are being made from a patch that contains only one active 
channel. The effect on the correlation coefficient of recording from several channels 
has not been systematically investigated. However i t  was pointed out above that  
correlations arise essentially from the occurrence of several sojourns in the same 
open state(s) in a burst. Thus, as long as the overall opening rate is low, i t  seems 
likely that the correlation may not be greatly affected by the presence of more than 
one channel. 

The second problem arises from the limited time resolution that  can be attained 
in practice. What appears to be an 'opening' a t  low resolution may actually be 
a 'burst' when looked a t  with higher resolution (see, for example, Colquhoun & 
Sakmann 1985). The interpretation of correlations between the lengths of 
openings is different from that between the lengths of bursts, as will be shown. 
But even a t  the best attainable resolution 'openings' may still actually be partially 
resolved bursts (see, for example, Colyuhoun & Sakmann 1985). I n  such cases the 
correlation between burst lengths may be assessed accurately, but the correlation 
between open times, and between the lengths of the first and nth opening in a 
burst, may be seriously affected. The expected correlation coefficient may, in such 
cases, be calculated by the methods of Hawkes & Colyuhoun (1987). 

Numerical examples 

Some examples that  illustrate the correlations described in $ 5 2 4  will be given 
in $5. 

2. C O E E E L A ~ I O N S  B E T W E E N  O P E N  T I M E S  A N D  B E T W E E N  S H U T  T I M E S  

In  this section the states in which the system can exist are divided only into 
open states (subset d )  and shut states (subset F), as described above and 
exemplified in figure 1. 

Correlations between the durations of openings 

The probability density function (PDF) of the lifetime of an opening is 

f (t) = 4, eQ.d.d tQ,dF up 

= 4" eQ,d,dt ( -- Q.d.d) U.d> (2.1) 
where the initial row vector, 4,, gives the equilibrium probability that the opening 
starts in each of the open states (see Colquhoun & Hawkes I 982), and u.d is a X 1 
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column vector of units. I n  order to dcrive the correlation hetwecn thc length (1,) 
of an opcning and the length (t,) of the nth subsequent opening (n = 1,2, . . .) we 
use the bivariatc distribution oft,, tn .  This can be written by using the principles 
tfescribed for univariate distributions by Colquhoun & Hawkes (1982). I t  is 

and its Laplace transform, from (1.2), is 

The average value of the product tot, is, from (1 21)  and (1.22), 

The mean length of an opening is 

P ,  = Pn = 90( - Q,.>) U ,  

and, from (2.1), (1 2 1  ) and (1 23)  we obtain, 

&(l;) = E(t i )  = 29" Q,,,> u.,, 

so the variance of'the open time is 

The autocorrelation coefficient with lag n is thus, from (1.20), 

P(..) = 9 0 - Q 2 1 . - o l - Q L . ,  , , 
- Q.2.L) I2I-u-d 401 ( - Q.;*>) u., 

The /c,, X /C., matrix U, ,  4, has each row equal to q5,, and therefore row sums equal 
to unity. Now lct h, denote the eigenvalues of the E, ,  X E,,  matrix X,,,. This matrix 
has rows that  sum to unity (sce 1.9); it therefbre has one unit eigenvalue, h, = 1 
say, the other eigenvalues being less than unity. The spectral expansion, from 
(l.."i), can therefore be written as 

wherc the matrices A ,  can be fbuntf from the eigenvcctors of X , ,  (see (1.6)). Wc 
niay also notc that after many shut open transitions (n -z m) the initial stat]e 
(in .d) becomes irrclcvant and the probability of' starting an opening in each .d 
stat]e tends towards the equilibrium value do, so it fbllows from (2.8) that 

thus the term in the numerator of the correlation coefficient can be writtcn as 
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The decay of the correlation coefficient with increasing lag, n ,  can thereforc be 
writtcn in scalar form as 

p(") = w , h ~ + w , h ~ +  ..., (2.11) 

where thc scalar coeflicients are given, from (2.7) and (2.10), by 

The form in (2.11) provides an alternative proof' that the correlation decays 
towards zero as a sum of geometrically decaying terms (as in 2.11), as first 
shown by Fredkin et al. (1985) .  The number of terms in the sum in (2.10) is 
one fewer than the number of' non-zero eigenvalues, i.c. it is usually 
R(X,,) - 1 = Cm(&, F) - 1. The connectivity between open and shut states, 
Cm(&, F) defincd in 5 1, is thereforc a t  least one plus thc number of geometric 
components that  are observed in the decay of thc corrclation coeflicicnt. 

The conditions for zero correlation 

When the &-F connectivity is 1, so X,, has a rank of unity, the correlation 
between open times will be zero (all eigenvalues except h,  = 1 will be zero so (2.10) 
will be zero). This will, of course, be the case if there is only one sort of open state 
(16, = 1) or only one shut state ( E F  = 1);  in either case &(Q*,,-) = R(Q,-.,) = 1. 
I n  fact in this case successive open times will be not just uncorrelated but also 
completely independent. This follows from the fact that the bivariate distribution, 
(2.2), can be factorized into the product of two scalars, one of which depends only 
on t ,  and the other only on t , .  This is the case because when R(Xde,) = l we have 
from (1.6), (2.8) and (2.9), because h, = 1, 

so (2.2) can be written in the form 

This is simply the product of the two simple univariate exponential PDFS given 
in (2.1). 

The maximum correlation 

Perfect correlations would not be expected for a random process. I t  is of interest 
to sce how large the correlation could be. Consider, for example, the following 
simple schemc. 

F,-A, 
I 

The maximum correlation may be expected if 3 $4 transitions are slow (the 
extreme case of this is when thcre are two different independent channels). In this 
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case X;,, will approach an identity rriatrix, so the correlation will die out slowly 
and the maximum correlation will approach 

where r, and 7, arc the mean lifetimes of' the two opcn states, and $,, 4, (the 
elements of 4,) are the probabilities that an opcning starts by transition to state 
1 or to state 2, respectively (4, +$, = 1). There will be no corrclation if rl = 7,, 

and the greatest correlation will arise if the opcn lifetimes are very different 
(r2/r1+0 or CO).  111 the latter case the correlation could approach when 
$, = $, = 0.5 (both sorts of opcning equally frequent) or 0.5 when 4, = r2/(r1 + 7,) 

(so short openings are much more frequent). 

Correlations h~tween durutions oJ shut periods 

The correlation coefficient can be calculated from the same expression as for open 
times (2.7), after interchange of .d and .F throughout, and hence substitutior~ for 
4, of the initial vector fbr shut periods (sec 6.4), namely 4, = 4, GdF. Thus the 
variance of shut times (cf. (2.6)) is 

and p )  = 4 -  Q )  ( G  G ) -  4 1 ( Q )  n 3 1, (2.17) 

This will have the same fbrm as (2.11), because the rank of G,-,,Gd,,, will be 
the samc as that of X&,& = G,&,: G,F,,. 

We may note here that when the ,&-F connectivity is unity, so that Q,,,,, etc. 
have unit rank, we have 

G.d.8 = USZ 4s  1 GFd U.F 40 > (2.18) 

which together imply the result in (2.13), and also that 

so the corrclation in (2.17) will be zero. 
Thus corrclations bctwcen shut times provide, in principle, similar information 

about the open-shut connectivity to that provided by corrclations bctwcen open 
times (see examples in $5). 

Correlation bdw~en open and shut tiwrps 

The cwrrelation coefficient betwcen thc lcngth of' an opcning and the length of 
the nth subsequent shut period (n 3 1) cBan bc calculated by methods exactly 
analogous to thoscl presented above. ' l 'h~ rcwdt is 

where r&,, and have been given in (2.6) and (2.16). As before, the 
correlation will be zero if the connectivity between the opcn states and the shut 
stabes is unity. An example is given in $5. 
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When openings occur in bursts it may be possible (resolution permitting) to 
measure, for example, the correlation cocfficicnt between the length of the first and 
of the nth opening in a burst (n 3 2). For consistcncy with the notation clsewhcrc 
the openings in a burst should be numbered O , 1 ,  . . . , n- l ,  but the numbering 
1,2,  . . . , n will be retained here because of' its familiarity. The lag of the auto- 
correlation coefficient is therefore n- l rather than n, so it will be denoted 
p(n - l).  Thus n = 2,3, . . . correspond to p( l  ), p(2), . . . . These correlations should 
be independent of the number of channels in the patch from which measurements 
are made. Two versions of this procedure will be described. In  the first version 
p(n- l )  is measured using all bursts that  have n or more openings. I n  the second 
version p(n- l )  is measured using only those bursts that  contain a fixed number 
of openings. There will be more data for the former calculation but the latter 
may give higher correlations. 

Correlation between the .first and the nth opening in all bursts with n or 
more openings 

For any given n the data will consist of those bursts that  have n or more openings 
(n 3 2). The PUP of the length of the first opening in such bursts can be found by 
the methods of Colquhoun & Hawkes (1982) as 

and for the nth opening in such bursts the PUP is given by them as 

f( tn)  = #b H22 - Q.&,) u,/l'(r 3 n). (3.2) 

I n  these results the l X E ~ &  vector 4, contains the probabilities that the burst 
starts in each of the open states, and the denominator is the probability that  a 
burst has n or more openings, namely 

and, for calculation of the variances, we find that  

= 24, Q.2> H22 u,/l'(r 3 n),  (3.6) 

E:(ti) = 24, H,$2 Q~;> u.&/P(r 3 n). (3.7) 

I n  order to find the covariance we note that the bivariate distribution oft,, tn is 
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Substutition of' (3.4)-(3.7) and (3.9) into (1.19) gives t,he required aut,ocorrelat,ion 
coefficient, p(n- 1). The decay t,owards zero of the correlation coefficient as the lag, 
ri - 1, increases will have a more complex form than in Lhc case of the correlation 
between open times. However, t,he condition for zero correlation is simple. 

The condition for zwo correlation 

It can be shown that the correlation coeficient will be zero if H,,, has unit rank, 
i.e. if the direct connectivity bctween d st,ates and .g states, I j V ( . d ,  A?) = 1. When 
R(H~,',) = 1 all the eigenvalues of H,&& will be zero except fbr one, h, say. Thus 
in this case, from ( I  .5 and 1 .6), 

The expression fbr the aut,ocorrelation coefficient shows t,hat when 

the correlation coeficient will be zero. I t  can be shown that  this expression will 
be true whenever the direct connectivity between .d and 3 is unity. The proor 
is particularly simple (via (1.6)) in the case where there is no dircct communication 
betwecn ,d and W because in this case A, = U,, 4, (also = 4, in this case). 

The open times will not only be uncorrelatetl but also completely independent 
when R(H~,~,)  = 1. As before (see (2.12). (2.14)) this follows from ( l  .G)  or (3.10) 
which show that the bivariate distribution (3.8) factorizes into the product, of two 
scalars. In fact, irisertiori of (3.11) into (3.8) shows that  the bivariate distribution 
becomes the product of the univariate distributions in (3.1) and (3.2), i.c. 

Corrrlation betwren t h ~  j r ~ t  nnd the nth opening in Oursts with exactly r op~riinqs 

This corrclation, fbr lag n- l ,  will bc denoted p(n- l ; r). The data consists of 
only those bursts which havc exactly r openings The d~stributions of the lengths 
of the first and the nth openings in such bursts arc given k)y Colquhoun & Hawlies 
(1982) as 

.f(tl)  = #t,eQddtl(-Qd,) Hr,$ eb/P(r), (3.13) 

In  thcse expressions thc 'cnd of burst' vector is 

and the probability of'thcrc: being cxactly r openings in n burst is 
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Prom (3.13) and (3.14) we also obtain, for calculation of the variancc. 

The bivnriate distribution of the open times is 

Substitution of these results into (1.19) gives the required corrc:lat,ion coefficients, 
p ( % - 1 ; ~ ) .  

As in the previous casc, t,he correlation will be zero when (3.11) is true, which 
will bc the casc whcn li(H,,&) = 1. Again opcnirigs arc: indcpcndent, as in (3.12), 
in this casc. When the direct corincctivity between d and a is grcatcr than one 
there will bc a corrclatiori which will decay towards zcro with increasing lag (n- 1 ) .  

Examples of burst mechanisms 

Figure 2 shows various possible arrangements of the statcs. Thc rank of Q~,g 
(and hence, usually, that  of H,,) can be determined by inspection in the way 
described in 9 1 for the rank of Q~,,. In  all the reaction schemes shown in figure 
2,  except for 6, 15 and 19-23, the direct &-g cormectivity is I I V ( d , g )  = 1 so 
Ii(H,,&) = 1 arid no correlations wit,hin bursts would be found. I n  the remainder 
Ii(H~,,) = 2 so such correlations would be present. A numerical example is given 
in $5. 

Two sorts of correlation will be considered, the correlations between the lengths 
of successive bursts, and correlations between the numbers of openings in 
successive bursts. Both sorts give similar information in pririciplc. 

Correlations between t / ~  lrnqths of bursts 

We wish to calculate the correlation between the length, to, of a burst arid the 
length, t,, of the nth subscqucnt burst (n  = 1 , 2 ,  . . .). Thc Laplacc transform of the 
PDF for the length of a burst is given by Colquhoun & Hnwkes (1982) as 

with mean, for any burst, 
= pn = #h yd.d '.d, 

where we define, for brcvity, 

From (4 .1)  and (1.21) wc find also, for calculation of the variance, 
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To calculatc &(tot,) we rcquire the Laplace transform of the bivariatc distribution 
of to, t,, which is 

whcrc Z,&*&, the k,d X k,& probability transition matrix for passagc from the start; 
of one burst to the start of thc next (Colquhoun & Hawkes 1982), has been dcfincd 
in (1.11)-(1.13). 

It may be notcd that Zed,, is analogous with X*&,, = G*&, G Y ~ &  in 52 ,  which is 
thc probaMity transition matrix from the start of one opening to the start of'thc 
ncxt. 

Thus, from (1.21) and (4.5) 

Substitution of (4.2), (4.4) and (4.6) into (1.20) gives the correlation cot:ficient as 

The characteristics of thc correlation coefficient (4.7) are rather like thosc of 
corrclation bctwecn opcn times (2.7). Thc burst transition matrix has rows that  
sun) to unity (scc (1.14)), as has X,,,&. Thedore  Zd,, has onc unit t:igcnvaluc, 
h, = 1 say, the othcr eigenvalues being less than unity. The spectral expansion, 
from (1.5), can bc writtcn as 

whcrc thc matriccs A ,  can be found from the cigcnvcctors of Z,d,, (see l . G ) .  After 
many transitions the initial state (in .d) becomcs irrelevant so WC find that 

lirn (Zn,,,) = A, = uddb (4.10) 
n-+ as 

a result analogous with that in (2.9) for open times. 
Thc central term in the numerator of'thc correlation coefficient can, from (4.9), 

be written as 
Z%,d-~Gd$b = A 2 h ~ + A : , A ~ +  . . . ,  (4.11) 

thcreforc thc corrclation coefficient will be zero if Zdd has unit rank (so 
h, = h, = . . . = 0). I n  fact burst lengths will be completcly intlcpcrldcnt in this 
case as was found for open times. Otherwise thc corrclation will dccay towards zero, 
with increasing lag (n), as the sum of &(Z,,,,) - 1 geometrically decaying terms. 
This result is exactly analogous with that for opcn times (sec (2.7)-(2.12)); thus 
observations on the correlations between burst lengths can, in principle, givc 
information about the rank of Zdd, just as obscrvations on the correlation 
bctwccn open times can give information about the rank of X,, ,. The intcrprctation 
of such obscrvations is discwsscd bclow. 
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Correlations between numbers of openings in bursts 

The correlation coefficient bctwccn thc number (r,) of openings in a burst and 
the number (r,) in thc nth subsequent burst (n = 1,2, . . .) can be calculated as 

Thc ccntral part of this equation is thc same as that for thc correlation of burst 
lcngths, so similar information about the rank of Z,,& can bc inferred; there will 
bc no correlation if R(Z,d,d) = l .  

(hnnections between states and the rank of Z,d,d 

As in previous cases, i t  is possible, by inspection of the reachtion scahemc, to sce 
what thc rank of the appropriate matrix (Zdd in this case) will be, and hence 
whether or not cwrrelations bctwcen bursts would be expevtetl. It was pointed out 
in $1 that  the rank of Zdd will usually bc the same as thc d-%? connectivity, 
P ( & , % ) .  As cxpected from the definitions of Zdd in (1.13), thc same rank will 
usually bc shared also by the matrices G,( ,,,, G,( ,,,, (G,,G,,+G,,) and 
(G,,G,,+G,,). Thesc tlcscribe the routes from the start of a burst (in d) to 
its cntl (in g), possibly via W, and back again to d. 

I n  somc cascs it will bc obvious that  no (*orrelation is expccated, i.c. that 
R(Z,,) = 1. It is clear from the definition of Zdd in (1.13) that &(Zdd) depends 
on thc rank of a kd X kW matrix SO its rank cannot exceed min (kd, kW). Therefore 
if there is only one open statc, or only one %? state, thc rank of Zdd, and thc .d-%? 
conncctivity, must be 1 and no cwrrelations bctween bursts will be expected (as, 
for example, in figure 2, 1-6). From (1.1 1)-(1 .l3), (1 .l  7)  and (1.18) i t  follows that 
the rank of Zdd and the d - W  conncctivity will bc 1, and so no cwrrclations 
bctwecn bursts will be expected if onc (or more) of the following cwntlitions is truc : 
(a) if the direcat d - W  connec+ivity is 1, so R(Q,,) = l ,  and there are no direct 
routes from d states to %? states, so R(Q,,) = 0 (c.g. figure 2, 8 and 12);  (h)  if 
R(Q,,) = 1 and &(Q,,) = 0 (e.g. figure 2, 15);  (c) if &(Qdw) = 1 and R(Q,,) = 0 
(c.g. figure 2, 10, 11, 13, 14 and 21);  (d) if, from the third definition in (1.13), 
wnnectivity is 1 bctwcen thc burst states (8 = d U W) and the 5% states so 
&(Q,,) = l (e.g. figure 2, 21), or between shut states and opcn states so 

&(Q.Fd) = 1. 
In  most of the cases in figure 2 in which &(Zdd) = l ,  one or more of the 

z Vol. 230. 13 
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conditions listed above is true. However, fbr 9 antl 20, (IV(,d,V) = 1 antl 
&(Z,d,d) = 1 though none of the ahovc conditions holds. In  9 dclction of the 
gateway state (A,) cwmplctcly diswnncc~ts .d and V. For 20 = 0 ,  but 
&(X,,) = &(H,,) = &(Q,,) = &(Q,,) = &(Q,,) = R(&,,) = 2. Nevcrthclcss, 
B(Z,,) = 1 and the .&-V connectivity, (=V(.&, V) = 1 hccause dclction of' statc B, 
tliscwnncc*ts ,d antl 55' wmpletcly. So R(G,* G,,) = 1, i.v. thc cquality sign in 
(1.17) does not hold; and although and G,-, both have rank 2,  their 
subsections that appear in (1.1:3), (Ghw) and (G,- both have rank 1. (Yearly 
the unit .d-V connectivity, and the lack of correlations betwecn bursts, in this 
example results from thv fact that during passage from .d statcs to W statcs (and 
vice versa) the system must always pass through onc single state (thc $8 state 
numhercd 4 in figurc 2, 20); what happens aftcr lcaving statc 4 must be 
independent of what happencd earlier. 

Consider the following scahcmc, with rate constants in reciprocal scconds as 
shown on the arrows : 1 

C, YF=j==+C, 
I1 

This is like 15 in figure 2 (apart from cvnncctions within thc open states, whicah 
do not affect thc prescncc or abscrwc of correlations). It is expectcd (sec figurc 2) 
to show cwrrelations between open times and within bursts, but not between bursts. 
Thc correlation bctwccn open times should be relatively large becausc (scc (2.15)), 
thc l<,+ B, interchange is not very fast, the mean lif'ctime of' A, (0.1 ms) is much 
shorter than that of' A, (10 ms), but the fbrmer is more chorrimon bec*ausc 
4, = [0.83 0.171. Thc cmrelations die out rathcr slowly (see (2.1 1 )), thc non-unit 
cigenvaluc, h,, of' X*,, (and also of G, ,, GdF) being 0.883. Thc results are shown 
in table l a. 

A scheme with the same states, but different connec+ons betwecn them is shown 
(with valucs for the rate csonstants) in (5.2). This schemc (apart from c*onnwtions 
withir~ open states) is like 16 in figure 2. 

B, A, 

20 1000 I t  
10" 

H ,  =F====+ A,. 
100 
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(1Lesults are shown for ( a )  the example given in (5.1),  and ( h )  the example in (5.2). The open-time 
correlation is the correlation between the length of a n  opening and the length of the nth 
subsequent opening, from (2.11) and (2.12). The shut-time correlation, from (2.17) is similar. 
The open-shut correlation is tha t  between the length of an opening and the nth subsequent shut 
time, from (2.20). The correlation between burst lengths is found from (4.7),  and tha t  between 
the number of openings per burst come from (4.18). Tn all of' these cases the lag (column 1) is 
l = n. 

For the correlations between openings within bursts, p(l) gives the correlation between the 
length of'the first opening in the burst and that  of the n,th opening in the same burst;  and p(1; r )  
is the same, but  for bursts with exactly r openings only (tabulated up  to r = 5 )  ; for both of these 
oases the lag for the autocorrelation coefficient is 1 = n.- l (see $3).  For cxample p(2; 4) = 0.201 
is the correlation between the length of' the first and third openings in bursts with exactly four 
openings.) 

( a )  The example in (5.1 ) 
between bursts 

open and shut times 
open 

1% ( 1 )  P ( 1 )  
shut 
P ( 1 )  

0.0020 

0.0018 

0.0016 

0.0014 

0.001 3 

0 

0.054 
0.049 
0.045 
0.041 
0.037 

0 

open-shut openings within bursts 
P ( 1 )  P ( 1 )  P (1;r)  

-0.030 0.328 0.245 ( r  = 2 )  
0.284 ( r  = 3 )  
0.301 ( r  = 4 )  
0.311 (r = 5 )  

-0.027 0.254 0.164 (r = 3 )  
0.201 ( r  = 4 )  
0.220 ( r  = 5 )  

-0.024 0.209 0.124 (v = 4 )  
0.156 (r = 5 )  

-0.022 0.177 0.099 (r = 5 )  

-0.019 0.154 - 

(b )  T ~ P  exa.mp1~ i n  (5.2) 

burst 
length 
P ( 1 )  

0 

0 

0 

0 

0 

0 

0.265 
0.151 
0.086 
0.049 
0.028 

0 

openings 
per burst 

P ( 1 )  

0 

0 

0 

0 

0 

0 

0.254 
0.145 
0.083 
0.047 
0.027 

0 

This scheme will have correlations between open times and between bursts, but 
not within bursts (see figure 2). 

The mean lifetimes of the open states are the same as in (5.1) though short 
openings arc less cwmmon in this case, 4, = 10.33 0.671. The distribution of the 
number of opcnings pcr burst has cwmponents with means of 13 antl l (see 97), 
the formcr cvnsisting of 10 ms openings (A,), and the latter of 0.1 ms openings. 
The unit mean component has 87 "/, of the area, caf. 4, = 10.87 0.131. The predicated 
(*orrelations are summarized in table l b. Again the cwrrelations between opcn antl 
shut t in~es die out slowly; the eigenvalues of Xdd are h, = l ,  A, = 0.914 so thcrc 
is a factor of 0.914 bctwcen succ*essive correlation cwefEcicnts (see (2.11)). 
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Correlations between bursts are slightly larger, but die out hster  ; the eigenvalues 
of'Z,&., are h, = 1 and h, = 0.571, so there is a hctor of 0.571 between successive 
correlation coefficients (see (4.1 1)). If' the interchange between the two W states 
were hster the correlations would be smaller. 

6. T ) T S T I L I B U T T O N S  O F  CHANNICL OPlCNTNQS A F T E R  A PlClLTURBATTON 

Many sorts of experiment produce single-channel records that  are not in a steady 
state. This will be the rase, for example, when ion channels are observed after a 
sudden change in membrane potential (voltage jump) or a sudden change in agonist 
cmncentration (concentration jump). The relevant distributions follow directly 
from the approach used by Colquhoun & Hawkes ( I  982) as long as (a) there is only 
one channel present and (6) the perturbation is applied as a step (at time 1 = 0, 
say) so that  a t  all times greater than zero the transition rates are constant. It may 
be noted that although the term epilibriurrt is used here, the results actually apply 
to systems that  are maintained in a skv.zdy s t a t ~  by an energy supply (Colquhoun 
& Hawkes I 983). 

For example, the distribution ofthe length of the first opening of a channel after 
a voltage jump may not be the same as the usual equilibrium distribution. It will 
be shown that the condition fbr such distrihtions to be the same as a t  equilibrium 
is simply that there is no cwrrelation between open times, etc. 

We may, however, note here that it is only the relativc areas of the components 
of the distributions that are expected to differ from those observed a t  equilibrium. 
In  every case the time constants should be the same as a t  equilibrium, except for 
the latencies to the first burst in (6.16) and (6.19), which will have the time 
constants of the distribution of all shut periods rather than those of the 
distribution of gaps between bursts. 

We first consider the case where the states of the system are divided simply into 
open states (d) and shut states (F), and then the case where the openings occur 
in hursts. 

Openings after a perturbation 

Thp pquilibrium distributions 

At equilibrium the distribution of open times has a PDF 

and the Y J ~ F  for shut times (see (2.16)) 

f (t) = 4, G,,, e Q ~ 9  t (  - Q,,) up (6.2) 

7'he equilibrium initial vector 

The elements of the ( 1  X /cd) vector 4, give the equilibrium probabilities that 
an opening starts in each of the open states ( i t  might, more appropriately, be 
denoted b,(co) to emphasize its equilibrium nature). This may be calculated 
(Colquhoun & Hawkes 1982, equation (3.63)) as 
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wherep,-(m) gives the equilibrium occupancies of each of the shut states and Qpd 
gives the transition rates from shut states to  open states. This form is intuitively 
reasonable; the chance that an opening starts in a particular open state will tend 
to be large if either the shut state(s) that are connected to i t  are highly populated 
(occupancies i n ~ , ~ ( m ) ) ,  or if the transition rates (in Q4,) from these shut states 
to the open state in question are rapid. The (scalar) constant in the denominator 
of (6.3) is present merely to ensure that the probabilities add to unity, i.e. 
4, U, = 1. We may note that  4, G,,,, in (4.2), is a ( l  X h,) vector that  similarly 
gives the equilibrium probabilities that  a shut period starts in each of the h, shut 
states. This we may denote as ),, thus 

where the subscript stands fbr shut. The elements of this also sum to unity because 
G,,, has rows that sum to unity, G,,,- U,- = U,,, so 4, U,- = ), Gd4 u4 = 1. 

The initial vector at t = 0. The equilibrium initial vector 4, applies to the set of 
times a t  which a channel happens to open. In  the case of a pcrturbation applied 
a t  t = 0, the initial vector must be calculated differently. If, for example, a channel 
is observed to be open a t  t = 0 then the probability that  this particular opening 
starts in each ofthe open states (the start being defined to occur a t  t = 0) is simply 
the occupancy of each of the open states (relative to the total occupancy of open 
states). Thus if the occupancies of each state a t  t = 0 are represented by the vector 
p@),  which is partitioned into open and shut states thus 

then the required initial vector, denoted 4&(0) say, is 

The scalar in the denominator is just the total occupancy of all open states, which 
is required to ensure that the initial vector sums to  unity, i.e. 

If the system is a t  equilibrium before the perturbation is applied then the initial 
occupancies, p ( O ) ,  will simply be the equilibrium occupancies, p ( m ) ,  calculated 
from the rate constants appropriate to the prejump conditions. These can be 
calculated according to (1.25). 

Distributions after a p~rturbation when t h ~  channel was open at t = 0 

We wish to know the distribution of the length of the nth opening, or the nth 
shut period after t = 0. The definition of'n when the channel happened to be open 
a t  t = 0 is illustrated in figure 3a. 

The PDF of'the length of'the first opening, i.e. the latency until the first shutting 
is found simply by replacing 4, by )&(O) in (6.1), giving 

Refhre the second opening is reached there must be a transition from open (d) 
to shut (F) and back; these transitions are described by the probability transition 
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t=O 

I~ ' IGUUE 3. The numbering of open and shut, periods, and of'bursts, after a pert,urbation a t  /, = 0. 
'rhe numbering of open and shut times is shown in (a) and ( b ) .  The numbering of hursts 
and of gaps between bursts is shown in (c) and (d ) .  In (a) and (c) the channel was open a t  
t = 0; in (b) and (d )  the channel was shut a t  t = U. 

matrix X.,,, = G&,- G,- , (see (1.8)). Thus the distribution ofthe length of the nth 
open or shut period (defined in figure 3a),  given that the channel was open a t  1 = 0, 
is given by replacing ), in (6.1 ) or (6.2) by the new initial vector 

Reduction to the equilibrium distribution. Under certain circurristances the 
distributions defined by (6.8) reduce to the usual equilibrium distributions in (6.1) 
and (6.2). (a) As would be expected, the equilibrium distribution is always 
approached after a large number of transitions have occurred because the vector 
in (6.8) approaches the equilibrium initial vector, ),, as n-t CO, as shown by (2.9). 
(6) If the lengths of openings are uncorrelated, i.e. &(X,&) = 1 as discussed in $2,  
then, from (2.1 3),  

so all optm time distributions excppt that fhr the first latency will be the 
same as the equilibrium distribution. Also, the distributions of all shut times, 
ir~vluding the first, will be thc same as the equilibrium shut time tlistribution 
because when R(X,,) = 1 it will usually be true that G,, = U,),, so 
) , (O)  G , ,  = ), = 4, G,, (see (2.18) and (6.4)). (c) If there is only one open 
state (kd = l ) ,  or only one shut state ( k ,  = 1 )  then the tfurations of openings 
and shuttings must be uncorrelatetl so the results just described under (b) will 

apply. 

I)istributions qfter a perturbalion when the ci~annel was shut at 1 = 0 

The most convenient definition of n when the channel happens to be shut a t  
1 = 0 is shown in figure 3b (the only difference between this and figure :<a is that 
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the initial shut period, i.e. the latency to  the first opening, is considered separately). 
In  this case we may, in analogy with (6.6), define an initial vector, 4,F(0), that 
contains the relative occupancies of each shut state a t  t = 0. Thus 

Th~.first latency. The latent period until the first opening (n = 0, figure 3b) will 
have the PJ)F 

j ( t ) = ) , F ( 0 ) e Q ~ v t ( - Q , F F ) ~ . F ,  n = o .  (6.11) 

All other cases. For all subsequent open and shut periods the PDF can be found 
by substitution for $,, in (6.1) and (6.2) respectively, of the new initial vector 

K~duction lo  the ~quilibrium distribution. The distributions defined by (6.12) will 
reduce to the equilibrium distributions, (6.1) and (6.2) under the following 
circumstances. (a )  After many transitions ( n j o o ) ,  (6.12) approaches its equi- 
librium value, do, by virtue of'(2.9) and (1.9). (b )  If openings are uncwrrelated all the 
distributions, except for n = 0 in (6.11), reduce to the equilibrium distributions 
by virtue of (6.9). This is the case even for n = 1 because (see (2.18)) when 
&(G,-,,) = 1 we have Gpd = U~ 4,, so 4F(0) Gp,, = 4, in (6.12). (c) If there is only 
one open state, or one shut state, then openings are uncorrelated so the results just 
described under (h)  will apply. 

Bursts alter a perturbation 

We now consider the case where the states of the system are divided into subsets 
d, 39 and %? as defined in 5 l .  

Thp eqwilibriurr~ initial vector 

The vector $,, which gives the equilibrium probabilities that  (the first opening 
of') a burst starts in each of the open states is defined and discussed by Colquhoun 
& Hawkes (1982, equations (3.2) and (A 1.10)-(A 1.24)). The equilibrium occu- 
pancies of the various states of the system a t  t = 0 may be partitioned simply into 
open and shut states, as already defined in (6.5), or as 

We wish to define the distributions of attributes of the nth burst, or of the nth 
gap-between-bursts, after t = 0. The definition of .n is illustrated in figure 3c for 
the case where the channel was open a t  t = 0, and in figure 3d for the case where 
the channel was shut a t  t = 0 (the only difference is that in the latter case the initial 
shut period, i.e. the latency until the first opening, is considered separately). Two 
versions of the latter case are of interest: (a) the case where the channel is simply 
observed to be shut (in any F state) a t  t = 0 and (h)  the case where the channel 
is known to be in one of the W states a t  t = 0, so we know that  we start in a 'gap 
between bursts ' (this might happen, for example, in the case of an agonist-operated 
channel when no agonist is present up to t = 0 so all channels are in the resting 
W state(s) until, a t  t = 0, a low agonist concentration is applied). 

A considerable number of different sorts of distributions can be defined for a 
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channel that shows bursting behaviour (e.g. the number of openings per burst, the 
burst length, the total open time per burst, the length of the kth opening in a burst 
with r. openings, etc. as described by Colquhoun & Hawkes 1982). In  each case1 
the expression for the equilibrium distribution starts with the equilibrium initial 
vector 4b. As in the previous case the distributions (and their means) after a 
perturbation can be found by replacing Qlb in these expressions by the initial vectors 
given below. 

Results co.nditiona2 o.n being open at t = 0 

The distributions, conditional on the channel being open a t  t = 0, for the nth 
burst, or the nth gap between bursts (see figure 3 c ) ,  are given by replacing 4, in 
the corresponding equilibrium expression by 

#&W Z5-2, 7% 3 1, (6.14) 

where QIJO) is as described abovt, (see (6.6)), and Z,, is the probability transition 
matrix from the start of one burst to the start of the next (see (1.13)). After 
sufficient time the equilibrium distributions are approached because Z5-2 
approaches ud Qlb as 7 ~ +  GO (see (4.10)). If bursts are uncorrelated, i.e. R(Zd,) = l 
(see $4) then, from (4.11), Zd, = U,#, so (6.14) reduces to Qlb and we obtain 
the equilibrium distributions in all cases, except for n = l .  If there is only one 
open state ( k ,  = 1) then QId(0) = & = l so we get the equilibrium distribution 
even for n = l (i.e. the latency of the first gap between bursts). 

Results cor~ditional on being shut at t = 0 

If we know only that the channel is shut (in t W state or a V state) a t  t = 0 an 
initial vector can be defined, as in (6.10), to give the relative occupancies of each 
shut state a t  t = 0, namely 4,-(0) = pF(0)/p,-(0) uF. 

TheJirst latency. The distribution of the latency to the start of the first burst 
(n = 0 in figure 3d) is 

4 F ( o ) e Q ~ ~ t ( - Q F F ) ~ F ,  n = 0, (6.15) 

just as for the simple open-shut cast, (6.11). 
All other cases. The distributions, conditional on the channel being shut a t  t = 0, 

for the nth burst, or the nth gap between bursts (defined in figure 3 4 ,  are found 
by replacing 4,, in the correspondiaig equilibrium expression by 

After sufficient time the equilibrium distributions are approached becaust, .Z$2 
approaches U,& as 7~ >CO, and G,,u, = U, (see (1.9) and (4.10)). When the 
bursts are uncorrelated so K(Z,,) = 1 and Z,., = ud4b, (6.16) reduces to db for 
7~ 2. However, for the first burst and gap (n = 1 in figure 3 4 ,  (6.16) will reduce 
to 4, only if &(GF,) = 1 so op~r~ings are uncorrelttted ttlso; in this case 
Ggd = U,- 4o = uF 4, as used above (see (2.18)). Note that, although uncorrelated 
openings imply uncorrelated bursts, the converse is not necessarily true. 

t The final form of the distribution of gaps between bursts is given by Colquhoun & Hawkes 
(1982, equation (3  85) )  in a form that  starts with a vector. denoted yl, However, comparlson 
of their equations (3.82) and (3.83) shows that  yl, = &,(I- H,.)-'(-Q,',), so this distribution 
too can be wr~t ten  starting with &,. 
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Results conditional on being in W at t = 0 

I n  this case the relative occupancies a t  t = 0 are given (see (6.13)) by 

The$rst latency. The PDF of the latency to the start of the first burst (n = 0 in 
figure 3d) will have Laplace transform 

(this follows from the principles used to derive the distribution of gaps between 
bursts, equation (3.82) in Colquhoun & Hawkes (1982), but in this case there is 
no possibility of an initial silent period in B). The inverse of this gives the required 
PDF, which can be shown to be 

The expression in square brackets is the 'V*' subsection (i.e. the last kW rows) 
of P,,(t) = exp (Q,-,t). This is an intuitively reasonable form to describe a 
sojourn in 9 that  starts in V and eventually exits from any 9 state to d. 

All other cases. The distributions, conditional on the channel being in V a t  t = 0, 
for the nth burst, or gap between bursts, are given when 7~ > l (see figure 3d) by 
replacing & in the corresponding equilibrium expressions by 

where G,(,,,, was defined in ( l .  12). The equilibrium distribution will be approached 
when 7~ -F cc, as before (see (6.14), (4.10) and ( l  .14)). When bursts are uncorrelated, 
so R(Z,,) = R(G,,,,,) = 1, (6.20) will become db so that  the distributions (for 
n l )  will become identical with the equilibrium distributions, because in this case 

ZdSd = =U, 4b> and %(%)U, = =, 4,. 

The first latency distribution when there are N channels present 

Under conditions where there are no correlations, so that  it is predicted that  all 
distributions will be the same regardless of 7~,  the distributions of open-time and 
of 'within-burst ' characteristics should be close to the distributions given above 
even when there are several channels rather than just one as was assumed in all 
the foregoing results. However, only in the case of the first latency have we 
obtained exact results. 

The distribution of the first latency for one channel, given above, can easily be 
generalized to take account of the presence of any number, N say, of channels, 
as long as the channels behave independently of one another. Define f,(t) as the 
PDF of the first latency for a single channel, and,f,(t) as the PDF of the first latency 
when N independent channels are present. Various sorts of first latency 
distributions have been defined above, but all of them have the general form 

where ai = l .  The number of components, the areas (a,) and the rates (hi )  will 
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depend on the particular problem. Thus the probability that the latency is great~r 
than t, for one channel, is 

m 

P(1atency > t) = l - li;(t) = St f,(t) dt, 

where F,(t) is the distribution function for the first latency for one channel. When 
N independent channels are present, the observed first latency will be greater than 
t if the first latencies for all N individual channels are greater than t so 

/-'(all N latencies > t )  = 1 - Fh(t) = [ l  - li;(t)lN. (6.23) 

This expression was used by Aldrich et 01. (1983). The required YDF, the derivative 
of FN(t), is thus 

The case of a skngl~ expwn~utial. If the distribution of first latency fbr one channel 
(6.21) has only one exponential component so i t  has the form fl(t) = h e-", with 
mean 7 = l l h ,  then (6.24) becomes 

This is a simple exponential distribution with mean 1/Nh = 7/N, so the mean 
latency is reduced by a factor of N, compared with that for one channel. 

irhp casp of two oxponmtials. When,fl(t) has the form a, h, e-A1 + a, h, ePAzt (where 
h, > h,, say) the mean first latency is p, = a l r l + a 2 r ,  for one channel. The 
distribution for N channels follows from (6.24); the mean first latcmcy, p,, from 
the binomial expansion, is 

The meaning of this result may be illustrated by the first term, which is a;Y/Nh,. 
A fraction of a r  of all observcd first letencies will be such that the latency for each 
ofthe N channels is ofthe short type (mean 7, = l lh , )  ; the mean latency for these 
will be l /Nhl = r l / N  If h, $ h, this term will predominate, i.e. the observed 
latency will be largely dictated by the shorter time constant. 

Nwrr/,erical example of distributions after a concentration jump 

This example is based on 6 in figure 2, and using the rate constants suggc:stetl 
by Colquhoun $ Bakmann (1985) in their attempt to fit observations made with 
suberyldicholine on frog end-plate channels. The scheme is thus: 
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where A denotes agonist, and the receptor channel is denoted R (shut) and R* 
(open). All the association rate constants were taken as 1.6 X 108 M - ~  S-l. Calcula- 
tions have been done on the distributions expected following a jump in concen- 
tration of agonist from zero to 4 nM. The initial state is therefore that  all channels 
are in state 5 before t = 0. There is no correlation between bursts in this case (see 
$4) so all the burst distributions are identicel wherever they occur after the 
concentration jump; they are the equilibrium distributions (some of which are 
given by Colquhoun & Sakmann 1985). The only exception is the distribution of 
the shut time up to start of the first burst (the first latency), which is the same 
as that given in table 2 for the latency to the first opening. 

Open times are correlated for (6.27), so the distributions of open and shut times 
will depend on where they occur after the concentration jump. In  this case 
p(1) = 0.073 for open times, 0.175 for shut times and -0.166 for the open-shut 
correlation. The distributions are summarized in table 2, which gives the area for 
each component of ( a )  the open-time distribution and ( h )  the shut-time distribution 
for the nth event (see figure 2a) following the concentration jump. All channels 
are in the resting state a t  t = 0 so the distributions conditional on being shut are 
t = 0 are the only relevant ones (see (6.10)-(6.12)). 

The initial vectors are also shown in table 2. They give, for the open-time 
distributions, the probability that the nth opening starts in each of the open states 

TABLE 2. OPEN- AND SHUT-TIME DISTRlBUTIONS FOLLOWING A CONCENTRATION 

J U M P  FROM 0 TO 4 nM, FOR THE SCHEME I N  (6.27). 

(The numbering, n ,  of the openings and shuttings is as in figure 3 ( b )  because the channel must 
be shut a t  t = 0. The initial vector gives the probability that an interval starts in the specified 
state. See text for details.) 

(a )  Open-tim.e distribution 
initial vector area 
I 2 r = O . l 6 m s  T =  l.6ms 

( b )  Shut-time distribution 
initial vector area 

4 5 7 = 43.8 ps 7 == 0.415 rns 7 = 1538.8 s 
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(states 1 and 2), namely #,((l) C , ,  X$;, from (6. l )  and (6.12). For the shut time 
distributions the initial vector gives the probability that the nth shut time starts 
in each of the shut states (states 3, 4 and 5 ) ;  from (6.2), (6.11) and (6.12) this is 
seen to be #,(O) G,, X$<$ G~,, = #,((l) (G,, G,,)". At t = 0 all channels are in 
state 5 SO #g(0) = [O 0 11. Thereafter the initial vector approaches its equilibrium 
value, as described above. 

The open-time distributions show far more 'short openings' just after the 
jump than a t  equilibrium; this is to be expected because after leaving R (state 5) 
a t  t = 0 it is necessary to pass through AR (state 4), from which short openings 
can originate directly, before any other states are reached. There is, in this 
example, little interchange between the two open states so the time constants of 
the open-time distribution (0.16 and 1.6 ms) are close to the mean lifetimes of AI%* 
and A, I%*, respectively, and the relative frequencies (areas) in the distribution are 
close to the probabilities, in the initial vector, that an opening starts in each of' 
these states. Also the probability that  an opening starts in A, R* (state 2) is very 
close to the probability that  a shut period starts in A, R (state 3). 

The shut-time distribution shows a first latency that consists almost entirely of 
the slowest component of the shut-time distribution (7 = 1538.8 S ) ;  i t  is virtually 
a single exponential so (6.25) would apply if there were more than one channel 
present. Shut periods after the first must start in A, R or AR (states 3 and 4). The 
former becomes more clommon as the equilibrium occupancy of doubly occupied 
channels is approached, when 76.8 % of shut periods start with an A, R*+A, R 
transition (as shown by the initial vector in table 2), and brief shut periods (spent 
mainly in A, R )  becomc concomitantly more common than they were near t = 0. 

7. C O M P O N E N T S  W I T H  Z E R O  A K E A  I N  T H E  T ) I S T R ~ B U T I O N  OE' T H E  

N U M B E R  OF O P E N I N G S  PEIt BIJRST 

In  principle, the distribution of the number of openings per burst has a number 
of geometric components equal to the number of open states, E ,  (Colquhoun 6t 
Hawkes 1982). However, in some circumstances there may be fewer components 
than this because the areas of some components (which have unit mean) may be 
zero. Thus the existence or non-existence of a discrepancy between the number 
of components in this distribution, and the number of exponential components in 
the distribution of open times (or, often more unambiguously, in the distribution of 
the total open time per burst) which should also both be E, ,  may give clues about 
mechanisms (see, for example, ,Jackson et al. I 983 ; Colquhoun 6t Bakmann I 985). 

Uistrihution of the number of openings per hurst 

The probability of observing r openings per burst was given by Colquhoun & 
Hawkes (1982, equations (3.5) and (3.9)) as 

where h, denotes the eigenvalues of H&& = G&& G#& and a,  represents the area 
01 each of the le~, geometric components that we have written explicitly in the 
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second form above (for which see Colquhoun & Sigworth 1983, equation (64)). The 
'mean number of openings per burst ', p,, for each component (analogous with the 
time constants for exponentials) is 

P, l / ( l  - A m ) ,  (7.2) 

and the overall mean, which can be written as the weighted mean of the p,, is 

r 7 l h e  areas, a,, of the components can be written in terms of A,, the spectral 
expansion matrices for H,, (see (1.5)), as 

Components with unit mean 

If H,,, has less than full rank (i.e. rank less than L,), then some of its 
eigenvalues will be zero and, from (7.2), for each such eigenvalue there is a 
component with mean p = l .  We therefore expect to see an 'excess' of isolated 
openings (i.e. of bursts that contain only one opening). The physical significance 
of this is discussed further below. The number of zero eigenvalues will generally 
be equal to Ic,, - R(H, ,), the nullity of H,, (see 1 ). Even when there is more 
than one zero eigenvalue the usual spectral expansion appears to hold, and Jordan 
forms are not needed (we have, so far, no general proof of this proposition). 

I n  certain cases the area for the component(s) with unit mean is predicted to 
be zero so the unit mean component will not be seen, and the number of components 
will be less than L, in principk (for any mechanism it  is, of course, always possible 
that some components may be too small to be detectable in practice). 

The physical significance of the excess of isolated openings is that  they consist 
of a transition from a W state to an d state and then back to a W state (a direct 
return to W will end the burst) ; this component will be absent (have zero area) 
whenever there are no direct routes from the d states to the W states (so 
Q,, = 0) as in the examples in figure 2, schemes 4, 8 and 12. When direct routes 
from d to W do exist then a component with p = 1 may be apparent. For example, 
in figure 2 many schemes (2,3,5,7,13,14,16-18 and 23), which have .&-W routes, 
do show such a component. However, 1, 9-11, 21 and 22 in figure 2, which also - 

have &-W routes, nevertheless have zero area for the p = 1 component. The precise 
conditions under which the component with unit mean appears are considered 
below, after some examples have been discussed. 

Three simple cases 

The foregoing argument can be illustrated by comparison of the three simplc 
schemes shown in figure 2, 1-3. These are reproduced here for convenience. 
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A numerical example for 2 

The foregoing results may bc contrasted with those for 2 with q,, = 3500 S-', 
q,, = 50 S-,, = 736.8 S-', qa, = 20000 S-', g,, = 1500 s l, g,, = 263.2 S-'. The 
mean lifetirncs arc therefore 20 ms for C',, 50 ps for R3, 0.2 rns for A, and 1 ms for 
A,, as in thc previous example. Recausc &(Xdd) = 2 opcnings will be wrrelated 
(see below); thc overall mean length of a single opening is 0.871 rns. Thc 
componcnts of the distribution of the number of openings per burst will, as in thc 
previous c w x ,  have means of p, = 5 and p, = 1 (where p, = 1 +q2,/(g2,rl4)), 
r14 = q14/(q12+q14), i.e. the eigenvalues of H d d  are again h, = 0.8, h, = 0. 
However, in this case the wrnponent with p, = 1 has not got zero arca, but 70 % 
of the area. We have a, = r14 = 0.7; i.e. the arca for the unit mean component is 
simply the probability that  a channel in statc A, will, a t  its next transition, go 
back to W ,  rathcr than proceeding to A,. More formally, the matrices involved are 

Again 4, = [ l  O ]  so, from (7.4), thc areas arc a, = 0.3, a, = 0.7, as stated 
abovc. The wrnponcnt with unit mean is very prornincnt; 76 O/, of all bursts have 
only one opening. 

In this case R(Xdd) = 2 so open times are cmrelatcd. We find that 

with cigenvalucs of 1 and 0.56. From (2.1 1) WC find the correlation coefficients to 
be p(1) = 0.083 ; p(2) = 0.046, p(3) = 0.026,. . . . As expeckd from (2.11) they decay 
in a simple geometric fashion with a ratio of 0.66 between successive values. The 
correlations (if therc is only one channel) between shut times, from (2.17), arc 
p(1) = 0.197, p(2) = 0.1 10, p(3) = 0.062,. . . ; and the open-shut wrrclations, from 
(2.20) arc p(1) = -0.171, p(2) = - 0.096, p(3) = - 0.054,. . . . There is no correlation 
within or between bursts bccmmc R(H=&~&) = 1 and R(Zdd)  = 1. 

The distribution of open times has time constants of 0.196 ms and 1.11 rns, quite 
close to the mean lifetimes of thc two open statcs A, and A, (namely 0.2 and 1 ms). 
However, as cxpec%ed from the cvrrclation bctwccn opcn timcs, the relative areas 
of these wrnponents will depend on thc position of'the opcning in a burst. As might 
be expected from the discussion abovc, bursts with only one opening consist 
predominantly of a single sojourn in A, (mcan life 0.2 ms); and the distribution 
of the opcn time in such bursts has 88.3 of the area for the wmponcnt with 
7 = 0.196 ms. For bursts with more than one opcning it is ncccssary, a t  the start 
of the burst, to pass through both A, and A, to reach B, (the gap-within-burst 
statc), and to revcrse this route to return to C, a t  the end of the burst. Thc first 
and last opening of any burst with more than one opening will have a distribution 
quite close to that expcctcd for the sum of lengths of a sojourn in A, and in A,. 
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The mean of this distribution would clearly be 1.2 ms, antl thc probability clcnsity 
function would havc (see, for cxamplc, Colquhoun & Hawkcs 1983, pp. 165-167) 
tirnc constants of 1 ms (arca = 1.25) and 0.2 (arca = -0.25). This is quite close to 
the :wtual calculated distribution, which has arca = 1.22 for 7 = 1.11 ms, and 
arca = -0.22 for 7 = 0.196 rns. The mcan is 1.303 ms (longer than 1.2 ms bcc*ause 
in a fraction 0.079 = n,,n,, of cases therc will be A,+A,+A, oscillations beforcl 
rcaching R,). This distribution goes through a peak; short durations will be rare 
bcc~ausc it is ncccssary to pass through hoth opcn states a t  thc bcginning and end 
of a burst. Openings othcr than the first antl last in a burst will rarcly gct back 
to A, and 99.6 0/, of the area is for the 7 = l .  l 1  ms component. The overall 
distribution of opcn tirnes has 74 of the arca for thc 7 = 1.1 1 ms component 
(overall rncan = 0.870 rns). 

If the cshanncl cvcr penetrates bcyond A, to reach A, then i t  will probably 
oscillate scvcral tirnes between A, and R,, so producing the cmnponent with many 
opcnings per burst. 

A num~rical ~xarnple ,for 3 
By suitable c~hoic~e of ratc constants, the distribution of thc numbcr of opcnings 

per burst can bc made the samc as in the last cxamplc. Take q,, = 3800 S-', 
q4, = 50 S l, q,, = 1200 S-', q3, = 5263.2 S-,, q,, = l 4  K36.8 S-', qZ3 = 1000 S l .  

These ratcs givc rncan lifctirncs for C,, B,, A,, A, of 20 ms, 50 p, 0.2 ms and 1 ms, 
cxactly as in the last two cxarnples. 

Thc components of thc distribution of the numbcr of opcnings pcr burst will 
again have means p, = 5, ,U, = 1, i.e. h, = 0.8, h, = 0. In this c8asc 
h, = T,, T,, + n,, = 1 -m3, nlq As in thc previous example the component with 
one opening pcr burst (p, = 1) awounts for 70% of the arca of thc distribution 
(a, = 0.7, a, = 1 -a, = ~ , , / h ,  = 0.3). Again 76 0/, ( = 1 - n,,) of all bursts havc only 
one opcning. Thus, in this particwlar vast thc distribution of the number of 
opcnings per burst is idcntical with that for 2. 

Thc distribution of open tirnes is not grcatly diflcrcnt from thc last exarnple 
either. The tirnc cwnstants in this casc arc cx:rcstly 1 ms and 0.2 ms, i.e. the mcan 
lifetimes of thc two open statcs (thcrc is no dircct communication bctwcen the two 
open states in this cxamplc, so cach observed opcning consists of a single sojourn 
in onc or thc other open state). Thc overall distribution of opcn times has 59.8 O/o 
of thc arca for thc 0.2 rns cwmponent (rathcr more than in the last casc), and 40.2 % 
for thc 1 ms componcnt. The cwrrclation between opcn times is rathcr strongcr than 
in thc last casc, p(1) = 0.15, though it tlccaays a t  the same ratc. Thc correlation 
(for one channel) between shut times is p(1) = 0.20, and between an opcn time and 
the following shut tirnc, p(1) = -0.23. Howcvcr, the burst structure is quite 
clistinctivc in thc prcscnt casc. ('learly bursts that havc cithcr one or two opcnings 
must consist cntircly of sojourns in A, (mcan lcngth 0.2 rns), as must thc first antl 
last opening of arty burst, so 100% of thcl area is associated with the 7 = 0.2 ms 
cwmponent for all such openings ; they are simple t.xponentia1 distributions (quite 
unlike the last example wherc thc distributions wcnt through a pcak). Openings 
other than thc first antl last in the burst would not be so tlistinctivc (92 O/o of arca 
fhr 7 = 1 ms, 8 %  for 7 = 0.2 rns) 
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In  this case it is again obviously the C,-+A,+C, transitions that mainly givc 
risc to the isolated openings; if the cshanncl pcnctratcs as far as R, i t  is likcly to 
oscillate several tirncs between 13, and A, bcforc rcturning to the resting statc, so 
giving risc to a cornponcnt with many openings per burst. 

It sccms, from thc discussion abovc, that a cornponcnt with unit rncan oc8c8urs 
whcn R(X~d~d) > R(H~d,), and WC suspcct (but have not rigorously proved) that 
this is a gcncral rcsult. This happcns whcn the cwnnectivity bctwccn sd and F 
( =  B' U V) is greater than the direct cwnnccativity bctwccn d and (sec 1).  For 
this to happcn thcrc must bc a statc in d that  (a) is conncctcd to W and ( h )  is 
rtot a dircct gateway statc (as dcfincd in $1) bctwccn d and B'. For cxamplc, in 
schcrnc 3 of figurc 2 state A, is conncctcd to W, but it is not a direct d-B' gatcway 
state so the component with unit rncan is sccn, but in schcrnc 1 of figure 2 state 
A, is a dircct &-B' gatcway statc and thc cornponcnt is not sccn. Similarly, thc 
unit mean cornponcnt is seen in 23 (A, and A, arc connectcd to V but A, is not 
a dircct d-g gatcway state, though statc A, is), but not in schcrnc 22 (states A, 
and A, are connected to V, but both arc dircct d-g gatcway states). 

Convcrscly, thc arca for a component with unit mcan will be zero if either (U) 

there is no dircct routc from d to W (Q,, = 0, I)"(.&', V) = 0) or (b) if thcrc arc 
dircct routcs from d to W but cach such routc has an sd statc as its dircct gatcway 
statc und this state is also a dircct gatcway state bctwecn d statcs and g statcs 
(as wcll as bctwecn d statcs and V states). Thcsc conditions are exactly thosc 
which cnsurc that thc rank of X&, is the samc as thc rank of H,~d, i.c. that 
(usually) the rank of Q ~ d F  is thc same as the rank of Qdg. 

An example of the argument is providcd by the schcrnc 21 in figurc 2 in which 
Q,, has the form 

4 5 6 l 7  8 9 

i 
X 0 0 1 0  0 0 1  

Q d r = l Q d a  Q d r l =  X 0 X :  X 0 X Z  l (7.10) 
X 0 O I 0  0 0 5 .  

The partition of Q~&, into Q&, and Ad, is shown by the dashcd linc; an X 

element represents any non-zcro rate (i.e. a routc cxists) and a 0 elcmcnt indicates 
that no routc exists. The state numbcrs are shown in thc margins. Notc that the 
dircct connectivity between d and B' is L j V ( d ,  B') = 2, thc dircct gateway statcs 
bcing A,, B, and B,. Dclction of two of thcsc states (2,4 or 4, B)  scparates d and 
B' completely, and deletion of the corresponding rows/colurnns in (7.10) lcavcs only 
zcros in Q~dg. If we choosc to dclctc row 2 and column 4 thcn WC arc also lcft with 
zcros in Q,, (bccausc statc A, is the one dircct d - V  gatcway as wcll as bcing one 
of the direct sd-g gatcway states). Thus thcre arc only zcros lcft in thc whole of 
Q,,; removal of statcs 2 and 4 (thc two d-F gatcway states) also scparatcs d 
and F complctcly. Thus R(Q~d%) = &(Q,,) = 2 and the cornponcnt with ,U = 1 
in thc distribution of the number of opcnings pcr burst will havc zcro area 
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The existcncc of a 'gateway' through which the channel must pass during 
passage frorn 'open' to 'shut'  (in thc sensc that  deletion of a state disco~~nccts 
open and shut statcs so the open--shut connectivity is 1) cnsurcs that the durations 
of individual opcnings are nnc:orrclatetl; intlecd it ensures that they arc totally 
indcpcndcnt. Shut timcs are likewise uncorrclatcd, as are the durations of an 
opening and the duration of subscqucnt shuttings. The rcsults of' Frcdkin et al. 
(1985) havc been oxtondcd horc to correlations bctwccn open times within a burst, 
and to correlations bctwccn burst lengths. Analogous rulcs concerning c:onncctivity 
and gateway states are given for thc lattcr eases. 

Several groups have detected corr~lat~ions in their data. Jackson et al. (1983) 
rncasured, essentially, an approximation to the correlation between the first and 
second apparcnt opcnings in a burst with acetylcholine (ACh) in culturctl rat 
muscle. Labarca r.t al. (1985) reported correlation bctwccn apparent open timcs 
in reconstituted Torpedo ACh rcccptor channcls. And Colquhoun &. Sakrnann 
(1985), working with frog end plate, found wrrclations between thc lcngths of 
apparcnt opcnings, and between the lcngths of the first and second apparent 
opening in a burst. Howcvcr, Colquhoun $ Sakmann could detect no correlations 
between burst lcngths; the comparison with the othcr work mentioned is made 
difficult because the resolution in Jackson et al. (1983) and Labarca et al. (1985) 
was 0.7-1 rns whereas in Colquhoun & Sakmann the resolution was 30-70 ps, so 
that what the former authors refer to as opc~~ings  the latter would tlesc:ribc as 
bursts. 

'rhe qualitat,ivc cxistcnec of a corrclation provides evitlence for thcrc bcing more 
than onc pathway between the relevant subsets of statcs. I n  principle, thc form 
of the tlecay of thc corrclation with increasing lag should tcll us the number of such 
pathways, but problems causctl by lirriitcd tirnc resolution, and an unknown 

,ions numbcr of channels, havc so far inhibited (wisely) any attempt to usc correlat' 
in such a quantitative way. 

Ncgativc correlations bctwccn thc Jcngth of an opening and that of the following 
shut pcriod havc bccn dctcctcd by McManus et al. (1985). They did not calculate 
corrclation wcffleicnts, but rathcr the mcan duration of all open intervals adjacent 
to shut intervals within a specified rangc of durations was plotted against the mcan 
duration of the specified shut intervals; a clcar rclationship was found for both 
a chloride and a potassium channel. On the othcr hand, Colquhoun &, Sakmann 
(198s) found nothing distinctive about tht: openings that border intermediate gaps 
within bursts. Clearly inspection of the actual struchurt: of the st:quenc:e of open 
and shut times may give information about the way in which states art: conntxtcd 
that is complementary to that found by measurement of' correlation coctticicnts, 
and the o t h r  methods disc:ussed herc (as illustratd by the examples in $7, for 
instance). 

The problem of the extent to which different rcaction schcmcs can be distin- 
guishtd frorn each other on the basis of experimental data is a complex one (even 
for idcal data). A start on the problem has becn made by Fndliin et al. (1985) and 
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fi'rcdkin & Rice (1986), but much remains to be done. The difficulties are well 
illustrated by the work of Horn $ Vandcnberg ( I  984) who used a full rnaxirnum 
1ilic.lihood analysis (which irnplicsitly takes into account all inforrnation about 
cwrrclations), and found that  with real experimental data rnally reaction schemes 
were not clearly distinguishable. 

Single charone1 events after a perturbatior~ 

There arc rnany publishcd rcsults on, for cxamplc, thc activation of sodium 
cshanncls or of calcium channcls following a vcdtagc jump, or of ACh-activated 
channcls after a concentration jump (see, for cxamplc, Chabala et al. 1985). 
Howcvcr, WC arc not aware of any cascs where differcncw in distributions for thc 
first, sccond ctc. opening have becn invcstigated. The results givcn hcrc show that 
substantial diEcrences in the distributions (in the arcas, rather than thc timc 
constants) rnay occur undcr certain circvrnstances. I t  is, however, shown herc that 
no such diffcrcnccs are expected under conditions where cvcnts arc uncorrelatcd. 

Missirc,g components in the dist~ihutiorc, of the nwrnbm of openings per burst 

I t  is shown hcrc that under certain circumstances thc numbcr of geornctric 
cornponcnts may, in principle, bc less than the numbcr of open states. Thc 
conditions under which a component with unit mcan does, or docs not, appear in 
this distribution are discusscd; as with the appearance of correlations, these 
conditions dcpcnd on the nature of thc connections betwccn the various statcs of 
thc system. This mcthod was used by Colquhoun $ Sakrnann (198s) to rulc out 
ccrtain rcaction schcrncs ; in fact in their case the inforrnation infcrrcd in this way 
was clearer than that infcrrcd from the mcasurcrncnt of corrclations. 

This work was supported by the M.R.C. WC arc grateful to I)r J .  H. Stcinbach 
for hclpful discussions. 
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