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(eneral expressions are derived for the correlation coefficients between
the length of an opening and that of the nth subsequent opening for a
single ion channel. Analogous results are given for the correlation between
shut times, and between an open time and subsequent shut times. An
alternative derivation of the results of Fredkin ef al. (in Proc. Berkeley
Jonf. in honor of Neyman & Kiefer, vol. 1, pp. 269-289 (1983)) is given,
and their results are extended to the case where openings occur in bursts.
Expressions are given for the correlation between the first and nth
opening in a burst, between the lengths of bursts, and between the
number of openings per burst. Each of these sorts of correlation can give
information about the connections that exist between the various states
of the system; interpretations of the correlations are discussed.
Expressions are derived for the distributions of the nth open time,
shut time, burst length, etc. following the application of a perturbation
(e.g. a voltage jump or a concentration jump). It is shown that these
distributions will all be the same (namely the equilibrium distribution)
only in the case where the openings, burst lengths, etc. are not correlated.
Certain reaction schemes predict a component in the distribution of the
number of openings per burst that has a unit mean (i.e. a component of
isolated single openings). For some schemes this component is predicted
to have zero amplitude, in principle, whereas in others it may be quite
prominent. The presence or absence of this component can give infor-
mation about the way in which the various states of the system are
connected. The interpretation in terms of mechanism is discussed.

0. INTRODUCTION

The interpretation of observations of single ion channel currents has, as one of its
major goals, the establishment of a qualitative reaction mechanism for the opening
and shutting of the ion channel. Once this has been established it will then usually
be possible to estimate rate constants for at least some of the transitions that are
involved in the mechanism. It has recently been shown by Fredkin et al. (1985)
that observations on correlations between successive open times can give impor-
tant information concerning the number of routes by which the various states of
the system can interconvert. Such measurements have been used as an aid to
interpretation of experimental results by Jackson et al. (1983), Labarca et al.
(1985), McManus et al. (1985) and Colquhoun & Sakmann (198s).
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16 D. Colquhoun and A. G. Hawkes

It is our aim in this paper (@) to provide explicit general equations by means
of which the magnitude of correlations that are predicted by any specific
mechanism may be calculated, for comparison with experimental measurements,
(b) to provide an alternative proof of the theorem of Fredkin et al. (1985) concerning
the decay of such correlations, (¢) to extend the results of Fredkin et al. (1985) to
correlations within and between bursts of openings and (d) to discuss the
distributions to be expected after a perturbation (e.g. a voltage jump), the form
of which depends on the presence or absence of correlations.

We shall also discuss the inferences that can be made from the presence or
absence of a component with near-unit mean in the distribution of the number of
openings per burst. The observation of such a component can give information
about the connections between states which is different from, though related to,
that inferred from correlations.

1. GENERAL PRINCIPLES

We shall assume throughout that the reaction mechanism can be described as
a Markov process (Colquhoun & Hawkes 1977, 1981, 1982, 1983; Fredkin et al.

1985).
The origin of correlations

The Markov assumption implies that if the system is in a specified state at time
t, the future evolution of the system is independent of what happened before £. The
lifetimes of sojourns in individual states are therefore independent of each other,
and are thus uncorrelated. Correlations can, however, arise in the experimental
observations when, as is usually the case, it is not possible to distinguish all of the
individual states of the system by looking at the record.

Consider, for example, scheme 1 in figure 1. This scheme has three shut states
that are experimentally indistinguishable, and two open states that are supposed
to have equal conductance so that they too are experimentally indistinguishable.
The experimental record would show only whether the channel was ‘open’ (in
either of the open states) or ‘shut’ (in one of the three shut states). Suppose further
that the mean lifetime of sojourns in open state 1 is shorter than that in open state
2, and that transitions between shut states 3 and 4, and between open states 1
and 2, are rather slow. In this case an opening that starts with a 3— 2 transition
is likely to be followed by several more 2->3—2 transitions (so several ‘long’
openings would occur in succession), before a 3 -»4 transition. Once in state 4 there
would then be several 4 > 1 >4 transitions, which would give rise to several ‘short’
openings in succession. Thus a short opening would tend to be followed by another
short opening (and a long opening by another long opening), so there would be
a positive correlation between successive open times. If there were few 2-»>3-»2
and 4 - 14 oscillations (e.g. if 3 ==4 transitions were rapid) there would be little
correlation between open times; the correlation arises essentially from ‘bursting’
behaviour. It may be noted here that two separate and independent channels with
different bursting characteristics may give rise to correlations, even when neither
alone would show correlations.
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Figure 1. Examples of possible connections between open (#/) states and shut (%) states (see
text). The number of each individual state is shown as a subscript. A line joining two states
indicates that reversible transitions between the states are possible. Note that the existence
or nonexistence of connections within 7 states, and within & states, is irrelevant to the
determination of the form of correlations; only connections between 7 and # matter.

Correlations can arise only if there are at least two experimentally indistinguish-
able shut states and two indistinguishable open states. As Fredkin et al. (1985)
pointed out, the appearance of a correlation will depend on the routes that exist
for transitions between states. For example, scheme 2 in figure 1 is the same as
1 except for the routes between states. But no correlations can occur in 2 because
every opening must start with the same (3->2) transition; what happens after this
transition must be independent of what happened before it.

Notation

The notation used here will be the same as that in Colquhoun & Hawkes (1982),
to which reference should be made for details.

The k states in which the system can exist will be divided into a subset &/ that
contains k , open states, and a subset & that contains the remaining £, shut states.
The individual open states (the members of the set <) will be denoted by roman
letters as A,, A,, etc., the individual open states being distinguished by the
subseripts. Similar notation is used for the members of other sets. For the analysis
of bursts of openings the shut states will be divided further into subsets #
(short-lived shut states, k, in number, that constitute gaps within bursts), and €,
which contain longer lived shut states (k, in number) such that any entry into ¢
is deemed to end the burst and hence to generate a gap between bursts. Thus
F =#BU€and ky = ky+k,. Finally, we define the subset &, which contains both
of and # states, the states in which the system resides during a burst of openings,
so & = o U contains k, = k_,+k, states.
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The matrix of transition rates between states will be denoted Q, and partitioned
sections of it as O, ,, Q5. ete. Expressions of the following type (which are
discussed fully by Colquhoun & Hawkes 1982) will occur frequently.

P (1) = eQuwwt 1.1

its Laplace transform o) = € ’ (.1
P (s) = (1= Q)" (1.2)
Gos(s) = Pg,(5)Qys. (L.3)

and the transition probability matrix G¥ (0} for transitions from open to shut
states, which will be denoted simply as G, ;, given by

G o =0 Qus (1.4)

Rank and spectral expansion

The following definitions are given, for example, in Mirsky (1955). The rank of
a matrix is the number of linearly independent rows (or columns) that it contains;
alternatively, the rank is the maximum value of r for which therc exists (after
permutation of rows and columns if necessary) an r X » submatrix with a non-zero
determinant. The rank of any matrix X will be denoted R(X). If X'is a £ X k matrix
then k— R(X) is called the nullity of X. The number of zero eigenvalues that X
has will usually be equal to its nullity (particular values of the rate constants could
give more zero eigenvalues, but such particular cases are not of great intercst in
practice). Thus a non-singular matrix (i.e. one with a non-zero determinant) must
have full rank (R(X) =k, nullity = zero). KKven when there are several zero
eigenvalues, the conventional spectral expansion,

k
X' = X A, A, (1.5)
m=1
will usually be valid. Here the A,, represent the eigenvalues of X, and the matrices
A,, can be calculated from the eigenvectors of X as

m
A =c, r m=1,2,...k, (1.6)

m m-m’

where c,, is the column eigenvector of X defined by (A, I—X)c,, =0 and r,, is
the row eigenvector of X defined by #,,(A,, I—X) = 0. The cigenvectors are scaled
so that the matrix with r,, as its rows is the inverse of the matrix with ¢, as its
columns so that 2 4,, = I. The 4 matrices also have the following properties (see,
for example, Colquhoun & Hawkes 1977).

A=A, and A, A;=0, i+ (1.7)

i
Some frequently used transition matrices

It will be convenient to define here, for later usc, three frequently used
probability transition matrices. First, we define as X, , the probability transition
matrix that represents transitions from the start of one opening to the start of the

next opening, namely
X = Cuys sy (1.8)

The i, jth element of X, , gives the probability, given that an opening startsin open
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state 4, that, after oscillation among the open states, followed by shutting and
subsequent oscillation among the shut states, the channel eventually reopens to
the open state j. Since the channel must eventually reach one of the open states
the row sums of X, , (like those of G, 5 and of G4 ) arc unity, so

Xyguy=uy Gupuz=u, Gz, u, =1uyz, (1.9)

where u, represents a (k_, x 1) column vector with unit clements.
Secondly, we may define a matrix, H , ,, that describes transitions from the start
of an opening to the start of the next opening in the same burst, namely

foﬂ = G.pm Gm/- (1.10)

Unlike the other cases this will not have unit row sums because it does not deseribe
all possible routes from the start of one opening to the start of the next; it excludes
routes via the 4 states.

Thirdly, we may similarly define (as in Colquhoun & Hawkes 1982, equations
3.88 and 5.5-5.7), for channels that show bursting behaviour, a matrix for
transition from the start of an opening to the first arrival (possibly via 4) in a
% state, namely

Goyae=T—G15G4,) NG 15 Gget Gyy), (1.11)
and, for the transition from the start of a sojourn in € to the next opening, we
define Gumyw = U= Gyup Ope) (Gup Gyt Gyy). (1.12)

Beeause a gap between bursts is characterized by at least one sojourn in €, we
can define an analogue of (1.8) that describes transitions from the start of one burst
of openings to the start of the next burst as

Z,y= Gy/(gayg Gmga)y/’
=I~GypGuy) O yzCry—GuyGyy),

The first of these definitions follows directly from the descriptions of the routes
from the start of one burst to the start of the next in (1.11) and (1.12), the second
version follows from the results in Colquhoun & Hawkes (1982). The third version
refers to the o/% subsection (i.c. the first £, rows) of G, and the .o/ subsection
(i.e. the last k, rows) of G, , and deseribes in an intuitively elegant way the
transition from burst (&) states, starting in o7, to 4 states followed by transition
from shut states (%), starting in 4, back to 7.

The matrices in {(1.11)—(1.13) all have, by a similar argument to that used above
for X, ,, unit row sums, i.e.

Z Uy =Uy, G.pz(.@)% ug=1uy, Gy U, =1Ug (1.14)

Rank, the number of routes between subsets, and connectivity
Open and shul subsetls

Consider X, , =0, 0.,507% 0z, which is the probability transition
matrix for transition from open states, via shut states, back to open. The rank of
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G , = will be the same as that for @, » (because the former is found by multiplying
the latter by the non-singular matrix —QL,). The ranks of Q , ;- and Q 4, (which
deseribe the same o/—% routes but in opposite dircetions) will usually be equal,
and X, will usually also have this samec rank. The former assertion can be
illustrated by considering the following hypothetical example which could apply
to the scheme 3 in figure 1. The numbers on the borders of the matrix represent
the state numbers, as shown in figure 1

3 4 5 12
330 15
17200 10 0
Q,sz 10 5 0]’ Oz,=4] 60 100]. (L.15)
51 0 0

In this case both have rank 2, which is the maximum possible value, £, (because
the rank of a matrix cannot be larger than the number of rows or columns,
whichever is the least). Particular numerical values could cause exceptions to this
rule. If the top left-hand clement in Q5 was 20 rather than 200 then the first
row of Q_ - would be exactly twice the second row (and the determinant of the
leftmost 2 x 2 section of it would be zcro) so the rank of @, would be reduced
to 1. Such numerical coincidences are never likely to be exactly true in physical
reality (though they could, of course, be approximately true). The term usually
is used here to indicate what will happen if the possibility of such numerical
coincidences is neglected.

Tt may also be noted that in @, 4 in (1.15) there is a column of zeros because
shut state 5 cannot communicate directly with either of the open states (figure 1¢).
There is a corresponding row of zeros in Q4 . In general, rows or columns of zeros
will appear in Q4 , in the same position that they would in the transpose of Q@ , 4,
and the presencc of a row or column of zeros will reduce the rank of a matrix by
one. (The rank of Q& in (1.10) cannot be larger than k , = 2, so as long as it has
two non-zero rows or columns it will usually have this maximum rank.) For
example, the scheme 2 in figure 1, in which the only shutting route is 23, might

have 3 4 5
CUIF 0 0 0 X
QW“z 30 0 0]' (1.16)

This has two zero columns and one non-zero column so its rank is 1. The same can
be concluded from the fact that it has a zero row. Put another way, the rank can
usually be found as the minimum number of rows (and/or columns) that must be
delcted to leave only zeros undeleted ; e.g. the first two columns in @, in (1.15),
and the bottom row (or the leftmost eolumn) in (1.16).

The fact that (1.15) has rank 2 evidently corresponds to the fact that both of
the two open statcs can communicate directly with ditferent shut states in
scheme 3 of figure 1 (as is also true in scheme 1), whereas (1.16) has rank 1 because
there is only one route from open to shut states in scheme 2. In scheme 4 both
open states communicate with &, but they both communicate with the same shut
state (statc 3) so Q5 has rank 1. In scheme § R(Q ;) =1 also, for similar
reasons. In both cases the channel must pass through a single state en route from
o to F.
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Gieneralization of such arguments leads to the following conclusions (Fredkin
etal. 1985). Therank of @ , z, Q4 , and of X, ,, will usually be cqual to whichever
is the lesser of the following: (@) the number of different open states via which it
is possible to leave o for the shut states (%), (b) the number of different shut states
via which it is possible to leave # for the open states (7). Let this number be
denoted €. Thus R(X, ;) < C (usually the equality sign will hold). For example
we have C =min(2,2)=2 in 1 (figure 1); C =min(l,1)=1 in 2; ("= min
(2,2)=2 in 3; C=min(2,1)=1 in 4 and C=min(1,2)=1 in 5. When
R(X ) = 1therewill be no correlation between open times (see Fredkin etal. 1983,
and below). The number C can also be defined as the minimum number of states
that must be deleted in order to separate completely the open states from the shut
states (so that when the corresponding rows and/or columns are deleted from Q , -,
only zeros remain, as described above).

Relation to graph theory

The term state corresponds to the term vertex (or node) as used in graph theory,
and the term connection (i.c. a route for transition between two states) corresponds
to edge in graph theory. The discussion above can now be made more rigorous (sce,
for example, Tainiter 1975). Regard .o/, # as sets of vertices of a graph. Define
the vertex comnectivity of &/ and # as the minimum number of vertices whose
removal disconnects & from # (note that removal of a vertex implies removal
of the edges that are incident upon it). Denote this number by CV(&/, #); it is
clearly the same as the number C defined above, and will be referred to hercinafter
simply as the connectivity. We may also define (for use, particularly, in §7) a gateway
state between of and F as any vertex (state) whose removal reduces CV(of , ).
Clearly the number of gateway states will often be greater than the connectivity.
For example, in 1 and 3 the connectivity, C¥(o/, %) = 2 (and the rank of X, , will
usually be 2), but states 1, 2, 3 and 4 arc all gateway states. In 2, 4 and 5 the
connectivity (and the rank of X, ) is unity, but in 2 there are two gateway states
(states 2 and 3), whereas in 4 there is only onc gateway state (state 3), as is also
the case in § (state 2).

Burst mechanisms

In this case the shut states are subdivided into short-lived shut states (subsect )
and long-lived shut states (subset 4). Arguments similar to those used above can
be applied to H, , = G ;4 G4, which describe routes from .o/ to 4 and back. The
rank of H , , will usually be the same as that of Q 4, and of Q4 ,. The connectivity
between o7 and #, CV(o4, %), can be defined exactly as above, as can a gateway
state between .7 and 4. Note, however, that this definition will include indirect
routes (via € states) between .o/ and #. For example, in scheme 20 of figure 2 there
is no direet route (sce below) between &7 and €, but CY(o/, %) = 1 because there
is an indirect route via state B, (which is the one &/—¢ gatcway state in this casc).
This definition will be useful in the interpretation of corrclations between bursts
because the rank of Z, , cannot be greater than, and will usually be cqual to,
CV(A,€) (sec (1.13) and §4).

In other cases, however, we will be intercested only in direct routes between two
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subsets of states. For example, when considering correlations within bursts we are
interested only in direct transitions between .o/ and # (any entry into a % state
would signal the end of the burst). We therefore define the direct vertex connectivity
of o and %, as the minimum number of states deletion of which removes all direct
connections between .o and % (so the states removed belong to either &/ or 4,
but not €). This number will be denoted DV(sZ, 8), and will be referred to hereafter
as the direct connectivity between o/ and #. It will usually be the same as the
rank of H , ,. Similarly a direct gateway statet between of and % can be defined as
a state the removal of which reduces DV(«Z, #). For example, schemes 1 and 3 in
figure 2 both have DV(s/, %) = 1 (which is the rank of H_, ,); in scheme 1 states
1 and 3 are both direct o/—% gateway states, but in scheme 3 only state 3 is a direct
o/ -9 gateway state. A more complex example is provided by schemes 22 and 23
in figure 2; the direct &/—# connectivity (and, usually, the rank of H_ ) is two
in both schemes, but the direct o/-# gateway states are states 1 and 3 in scheme
22, and states 2, 4 and 6 in scheme 23.

Two general results

The rank of the product of any two matrices, X and Y say, obeys the relation
R(XY) < min[R(X), R(Y)]. (1.17)

In the cases above, in which X and Y described the same routes (but in opposite
directions) the equality sign will usually be correct in (1.17), but this will not

1 In terms of graph theory we would define a minimal o/~ vertex cutset as a set of vertices,
V(s , %) in number, deletion of which disconnects .o/ and #; so a gateway state between &/
and 4 is a vertex which belongs to some minimal «/—% vertex cutset. Similarly, a direct minimal
-9 vertex cutset is a set of vertices, D¥(</, %) in number, deletion of which removes direct
connections between o/ and 4, and a direct gateway state between &7 and 4 is a one that belongs
to some such cutset. For example, in figure 2, scheme 20, D¥(«/, %) = 2 = R(H ), and the
minimal direct «/-Z vertex cutsets are {A, A,}, {A}, B,}, {A,, B3} and {B;,B,}, so A,, A,, B,
and B, are all direct gateway states between o/ and 4.

Fiwure 2. A selection of hypothetical mechanisms for which openings occur in bursts. There
is, of course, no suggestion that the more exotic schemes describe any real ion channel; they
are shown merely to illustrate the principles in the text. The individual states are denoted
A, B, C; they are the members of subsets, &/ (open), # (brief shut) and % (long-lived shut),
respectively. Individual states are given numbers (shown as subscripts), for reference in the
text.

The ranks of various probability transition matrices are shown. The ranks of Q ., and
Q4 indicate the direct connectivity between &7 and %, and between # and €, respectively.
The rank of H_,, is the same as that of Q_,, and the rank of X, , is the same as that
of Q5. When the rank of X, ,, H, , or Z_, is unity there will be no correlations
respectively, between openings, within bursts, and between bursts.

The last column shows whether or not a component with unit mean is expected to be
present in the distribution of the number of openings per burst. The symbol 0 indicates the
absence of such a component (i.e. cases where it has zero area), * indicates its presence,
and — indicates that there is no such component (which is the case when R(H, ) =k,
so H_, , has no zero eigenvalues).

The schemes are all shown with connections between the individual states within each
set (e.g. between the individual open states), but the presence or absence of such connections
does not affect whether or not correlations, or a finite area (last column), will be seen.
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always be true in other cases (see, for example, the case discussed at the end of
§4). Other general results are
RX+Y)< RX)+R(Y), 1
(1.18)
RX—Y) > [RX)~R(¥)|)

but we cannot say that the equality sign in (1.18) will usually be correct in any
of the cases that oceur in this work.

Definition of the autocorrelation coefficient

The correlation coefficient for any quantities x,, x, is defined as

C cov(@,m,)
PO = [ar () var ()
) (1.19)
_ Ky 2y) =y fhy
{B@}) — 31 B(x3) — 3]
where we define the means as
= B(xy),  py = Blxy).
When z, and 2z, have the same mean (u, say) and variance (0%, say)
Py, &) = [B(x, 2y) —pPl /0. (1.20)

The expectations that are needed for the evaluation of this expression can be
found from the Laplace transform, f*(s,, s,), of the joint distribution of x,, z, from
the general expression

Blafaft) = (= 1) 2, (51, 9,) /050 05y (1.21)

The following particular results will be needed frequently
—d(sI—Q ;) /dslsg = Q% (1.22)
and QAT —Q ) /A2,y = 2072, (1.23)

Calculation of equalibrium occupancies

The probability that the system is in each of its £ states at equilibrium (the
fraction in each state at equilibrium) will be denoted

P(0) = [pi(o0)  py(0) ..o py(0)]: (1.24)

For any specified reaction scheme these occupancies can easily be found by
inspection, from the law of mass action. For the purposes of writing a general
computer program it is convenient to have a general method of finding p(c0)
directly from any specified Q matrix:; in any such algorithm care must be taken
to avoid division by rate constants that happen to be zero. A method we have found
useful is to calculate

pi(o0) =d;/D, j=1,2,...k, (1.25)

where D=d +d,+ ... +d,,
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and d; represents the determinant of the matrix found by deleting the jth row and
jth column of @ (i.e. the jth principal minor of order k—1 of Q); this is the cofactor
of g;;. (We are grateful to the late H. Kestelman for proving 1.25.) We may also
note that D is equal to the product of the £—1 non-zero eigenvalues of Q.
Alternatively p(cc) can be found either as r, (see 1.6, and Colquhoun & Hawkes
1977), or by normalizing (to unit sum) any row of the adjoint matrix adj (Q),
because @ is singular and p(c0) Q@ = 0 at equilibrium.

Experimental difficulties in the measurement of correlation

There are two main problems in practice. Firstly it is usually not possible to be
sure that recordings are being made from a patch that contains only one active
channel. The effect on the correlation coefficient of recording from several channels
has not been systematically investigated. However it was pointed out above that
correlations arise essentially from the occurrence of several sojourns in the same
open state(s) in a burst. Thus, as long as the overall opening rate is low, it seems
likely that the correlation may not be greatly affected by the presence of more than
one channel.

The second problem arises from the limited time resolution that can be attained
in practice. What appears to be an ‘opening’ at low resolution may actually be
a ‘burst’ when looked at with higher resolution (see, for example, Colquhoun &
Sakmann 1985). The interpretation of correlations between the lengths of
openings is different from that between the lengths of bursts, as will be shown.
But even at the best attainable resolution ‘openings’ may still actually be partially
resolved bursts (see, for example, Colquhoun & Sakmann 1985). In such cases the
correlation between burst lengths may be assessed accurately, but the correlation
between open times, and between the lengths of the first and nth opening in a
burst, may be seriously affected. The expected correlation coefficient may, in such
cases, be calculated by the methods of Hawkes & Colquhoun (1987).

Numerical examples

Some examples that illustrate the correlations described in §§2—4 will be given
in §5.

2. CORRELATIONS BETWEEN OPEN TIMES AND BETWEEN SHUT TIMES

In this section the states in which the system can exist are divided only into
open states (subset /) and shut states (subset %), as described above and
exemplified in figure 1.

Correlations between the durations of openings
The probability density function (pDF) of the lifetime of an opening is
ft) = $,eC7'Q s ug
= $oels (—Q ) Uy, (2.1)

where the initial row vector, ¢, gives the equilibrium probability that the opening
starts in each of the open states (see Colquhoun & Hawkes 1982), and u_, isak , x 1
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column vector of units. In order to derive the correlation between the length (4,)
of an opening and the length (¢,) of the nth subsequent opening (n = 1,2,...) we
use the bivariate distribution of {, ¢,. T'his can be written by using the principles
described for univariate distributions by Colquhoun & Hawkes (1982). It is

S, t,) = 9, €291Q ,2(G gy Gy s)" Gy y P2 Q s Uy, ]
= P eCu (= Q) Xy Qs (—Q Uy, 2 ]J
and its Laplace transform, from (1.2), is
S*0:80) = B0 1= Qoyo) (= Qo) Xy (50 I= Qo)) (= Qo). (2.3)
The average value of the product ¢,¢, is, from (1.21) and (1.22),
B(tyt,) = Pl = Quiy) Xy (— Qyis) Uy (2.4)

The mean length of an opening is

(2.2)

Ho = fp = ¢0( - Q;lo/) by (25)
and, from (2.1), (1.21) and (1.23) we obtain,
E(5) = B(t,) = 20, Q4% Uy,

so the variance of the open time is

Topen = Pol —Quiy) 2I—u, 9,)(— 055 ) uy. (2.6)
The autocorrelation coefficient with lag » is thus, from (1.20),
_ (=0 )X~y @1 (— Q) Uy n> 1.

¢0( - Q;/IQ/) l 21— uy ¢01 ( - Q;}%) uy ,

The k , x k,, matrix u , ¢, has each row equal to ¢,, and therefore row sums equal
to unity. Now let A; denote the eigenvalues of the £, x £, matrix X , ,. This matrix
has rows that sum to unity (sce 1.9); it therefore has one unit eigenvalue, A, = 1
say, the other eigenvalues being less than unity. The spectral expansion, from
(1.5), can therefore be written as

p(n) (2.7)

X, =A+ A, 2+ A28+ .., (2.8)

where the matrices 4,, can be found from the eigenvectors of X, , (see (1.6)). We
may also note that after many shut<>open transitions (n »oc) the initial state
(in .7} becomes irrelevant and the probability of starting an opening in each .o
state tends towards the cquilibrium value ¢, so it follows from (2.8) that

lim (X% )=A4,=u_é,, (2.9)

n >

thus the term in the numerator of the correlation coefficient can be written as

C
(X =ty ol = A AT+ AN+ = 2 A, AT (2.10)

m=2
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The decay of the correlation coefficient with increasing lag, », can thereforc be
written in scalar form as

pn) = w, Al +w, AT+ ..., (2.11)

where the scalar coefficients are given, from (2.7) and (2.10), by

b 03 A~ 05 uy
" ¢0(_Q.;/}d)(2I*ud¢o)("—Q;/}d)u&1

The form in (2.11) provides an alternative proof that the correlation decays
towards zero as a sum of geometrically decaying terms (as in 2.11), as first
shown by Fredkin et al. (1985). The number of terms in the sum in (2.10) is
one fewer than the number of non-zero eigenvalues, ic. it is usually
R(X,,)—1=C(s,%#)—1. The connectivity between open and shut states,
CY(of, F) defined in §1, is therefore at least one plus the number of geometric
components that are observed in the decay of the correlation coefficient.

w (2.12)

The conditions for zero correlation

When the &/—% connectivity is 1, so X, , has a rank of unity, the correlation
between open times will be zero (all eigenvalues except A, = 1 will be zero so (2.10)
will be zero). This will, of course, be the case if there is only one sort of open state
(k. = 1) or only one shut state (k; = 1); in either case R(Q ) = B(Q4,,) = 1.
In fact in this case successive open times will be not just uncorrelated but also
completely independent. This follows from the fact that the bivariate distribution,
(2.2), can be factorized into the product of two scalars, one of which depends only
on f, and the other only on {,. This is the case because when R(X , ,) = 1 we have
from (1.6), (2.8) and (2.9), because A, = 1,

Xyw=A =crry=u,9, (2.13)

80 (2.2) can be written in the form

fitg:t,) = 18,607 0(— Q) Uy || 29 (= Q ) Uy 1, (2.14)
= flt)) ft,)- J

This is simply the product of the two simple univariate exponential PpDFs given
in (2.1).
The maximum correlation
Perfect correlations would not be expected for a random process. It is of interest
to sce how large the correlation could be. Consider, for example, the following
simple scheme.
F,—A,

l

F,—A,.

The maximum correlation may be cxpected if 3==4 transitions are slow (the
extreme case of this is when there are two different independent channels). In this
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case X7, , will approach an identity matrix, so the correlation will die out slowly
and the maximum correlation will approach

@1+ Pol1y/7))? I o 1r
[I+M;H32/71>2J ’ (2.15)

where 7, and 7, arc the mean lifetimes of the two open states, and ¢,, ¢, (the
elements of @) are the probabilitics that an opening starts by transition to state
1 or to state 2, respectively (¢, + ¢, = 1). There will be no correlation if 7, = 7,
and the greatest correlation will arise if the open lifetimes are very different
(73/7;—>0 or oo0). In the latter casc the correlation could approach i when
¢, = ¢, = 0.5 (both sorts of opcning equally frequent) or 0.5 when ¢, = 7,/(1, +7,)
(so short openings are much more frequent).

Correlations between durations of shul periods

The correlation coefficient can be calculated from the same expression as for open
times (2.7), aftor interchange of .7 and % throughout, and hence substitution for
@, of the initial vector for shut periods (sce 6.4), namcly ¢, = ¢,G 5. Thus the
variance of shut times (cf. (2.6)) is

(Tghut = ¢b(_Q;ﬂ1§"’)[21—u¢¢'b'(_Q;';7)u£f‘) (2.16)
and  p(n) = @(—Q35)(Cry Guysr)" —ts d(— Q%) s /05y, n 21, (2.17)
This will have the same form as (2.11), because the rank of G4, G, will be
the samc as that of X, , = G, - G5 ,.

We may note here that when the &/~% connectivity is unity, so that Q -, ete.
have unit rank, we have

G(Wg" = u&l ¢S’ Gf(o[ = uf/_¢07 (218)
which together imply the result in (2.13), and also that
Gao;(&/ G&if = u,? ¢s7 (219)

80 the corrclation in (2.17) will be zero.

Thus correlations between shut times provide, in prineiple, similar information
about the open—shut connectivity to that provided by correlations between open
times (sce examples in §5).

Correlation between open and shut times

The correlation cocfficient between the length of an opening and the length of
the nth subscquent shut period (» > 1) can be calculated by methods exactly
analogous to those presented above. The result is

; T
(a-(z)pen (réhut)z

1

iy (2.20)

p(n)
where o3, and o, have been given in (2.6) and (2.16). As bcfore, the
correlation will be zero if the connectivity between the open states and the shut
states is unity. An example is given in §5.
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3. CORRELATIONS WITHIN BURSTS

When openings occur in bursts it may be possible (resolution permitting) to
meagsure, for example, the correlation cocfficicnt between the length of the first and
of the nth opening in a burst (r > 2). For consistency with the notation clsewhcere
the openings in a burst should be numbered 0,1,...,7n—1, but the numbering
1,2,...,n will be retained here because of its familiarity. The lag of the auto-
correlation coefficient is therefore n—1 rather than n, so it will be denoted
p(n—1). Thus n = 2,3, ... correspond to p(1),p(2),.... These correlations should
be independent of the number of channels in the patch from which measurements
are made. T'wo versions of this procedure will be described. In the first version
p(n—1) is measured using all bursts that have n or more openings. In the second
version p(n—1) is measured using only those bursts that contain a fixed number
of openings. There will be more data for the former calculation but the latter
may give higher correlations.

Jorrelation between the first and the nth opening in all bursts with n or
more Openings

For any given n the data will consist of those bursts that have n or more openings
(n = 2). The por of the length of the first opening in such bursts can be found by
the methods of Colquhoun & Hawkes (1982) as

flt)) = ¢, eQ99 ' Q 3Gy  HY Ju [ Plr 2 n)

= ¢pelus(—Q ) HYy ju,/P(r 2 n) (3.1)
and for the nth opening in such bursts the pp¥ is given by them as
f(tn) = oy Hiyy eo'n(—Q ) uy/ Plr 2 m). 3.2)

In these results the { x k,, vector ¢, contains the probabilities that the burst
starts in each of the open states, and the denominator is the probability that a
burst has n or more openings, namely

P(r =¢,Hy ju,. (3.3)

From these results we find the means as

= E(t)) = (= Q) Hyguy/P(r 2 n), (3.4)

= E(t,) = ¢ Hy j(— Q) uy/Plr 2 n), (3.5)
and, for calculation of the variances, we find that

E(t}) = 26, Q% Hyjuy/Pir 2 ), (3.6)

E(t7) = 20, Hy Q5 uy/ P(r 2 ). (3.7)

In order to find the covariance we note that the bivariate distribution of ¢ 1s
flt.t,) = ¢pelovtiQ .Gy HY 2eQusin(—Q , Nu,/P(r = n)
= ¢, 0@ ti(—Q N HY LRt tn(—Q , Ny [P(r = n) (3.8)

80 Bty ty) = 0, Qs Hoy g Qs g/ Plr 2 ). (3.9)

1’7’L
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Substutition of (3.4)—(3.7) and (3.9) into (1.19) gives the required autocorrelation
coefficient, p(n— 1). The decay towards zero of the correlation coefficient as the lag,
n— 1, increases will have a more complex form than in the case of the correlation
between open times. However, the condition for zero correlation is simple.

The condition for zero correlation

It can be shown that the correlation coefficient will be zero if H , , has unit rank,
L.e. if the direct conneectivity between o7 states and & states, DV(./, B) = 1. When
R(H , ) =1 all the eigenvalues of H, , will be zero except for one, A, say. Thus
in this case, from (1.5 and 1.6),

W = A AT = AT (3.10)
The expression for the autocorrelation coefficient shows that when
A=A u, p,A4,/¢,A4,u, (3.11)

the correlation coefficient will be zero. It can be shown that this expression will
be true whenever the direct connectivity between &/ and # is unity. The proof
is particularly simple (via (1.6)) in the case where there is no dircet communication
betwecn .o/ and ¢ because in this case A, = u, ¢, (also ¢, = ¢, in this case).

The open times will not only be uncorrelated but also completely independent,
when R(H_ ) = 1. As before (see (2.12), (2.14)) this follows from (1.6) or (3.10)
which show that the bivariate distribution (3.8) factorizes into the produet of two
scalars. In fact, insertion of (3.11) into (3.8) shows that the bivariate distribution
becomes the product of the univariate distributions in (3.1) and (3.2), i.c.

Sty 1) = fl) ft,,). (3.12)

Correlation between the first and the nth opening in bursts with exactly v openings
This correlation, for lag n—1, will be denoted p(n—1;7). The data consists of
only those bursts which have exactly r openings. The distributions of the lengths
of the first and the nth openings in such bursts are given by Colquhoun & Hawkes
(1982) as

Sit) = @y Coi(—Q, ) HYy 3 e [ P(r), {3.13)
fita) = ¢y HY S eCostn(—Q ) H e/ P(r), r2n>2  (3.14)
with means
o= u(— Qo) H e,/ P(r), (3.15)
1 = by H 3= Qirly) Hily ey PI). (3.16)

In these expressions the ‘end of burst’ vector is
ey = (Gyy Gyet+ Gyelug = I—H, )u, (3.17)
and the probability of there being exactly » openings in a burst is

Piry=¢,H;Le,. (3.18)
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From (3.13) and (3.14) we also obtain, for calculation of the variance,

H(8) = 2¢y, Qo HYy oy €0/ P(7), (3.19)
(1) = 26y H 5 Q5 Hiy 5 e/ Plr). (3.20)
The bivariate distribution of the open times is
[t t,) = @ eQv s (—Q ) Hyj eQoiin(—Q ) Hy e/ P(r), 12022,
(3.21)

and therefore
E(t,t,) = ¢(— Q%) H —Q ) H e,/ P(r) (3.22)

Substitution of these results into (1.19) gives the required correlation coefficients,
prn—1;r).

As in the previous casc, the correlation will be zero when (3.11) is true, which
will be the case when R(H , ) = 1. Again openings are independent, as in (3.12),
in this casc. When the direct connectivity between of and 4 is greater than one
there will be a correlation which will decay towards zero with increasing lag (n—1).

Hxamples of burst mechanisms

Figure 2 shows various possible arrangements of the states. The rank of Q4
(and hence, usually, that of H, ) can be determined by inspection in the way
described in §1 for the rank of Q.. In all the reaction schemes shown in figure
2, except for 6, 15 and 19-23, the direct o/—%# connectivity is DV(of/, %) =1 so
R(H_, ;) = 1 and no correlations within bursts would be found. In the remainder
R(H ) = 2 so such correlations would be present. A numerical example is given
in §5.

4. CORRELATION BETWEEN BURSTS

Two sorts of correlation will be considered, the correlations between the lengths
of successive bursts, and correlations between the numbers of openings in
successive bursts. Both sorts give similar information in principle.

Correlations between the lengths of bursts

We wish to calculate the correlation between the length, ¢,, of a burst and the
length, ¢, of the nth subsequent burst (n = 1,2, ...). The Laplace transform of the
pDF for the length of a burst is given by Colquhoun & Hawkes (1982) as

F¥(5) = Sl L~ G y(s) G5 () G5 4(5) Gye+ Glp(s)uy (4.1)

with mean, for any burst,

=@ Yty (4.2)
where we define, for brcvity,
Yo =U—=G oy Gyy) (= QL) I~ Q3 Q%5 Gy (4.3)
From (4.1) and (1.21) we find also, for calculation of the variance,
E(3) = = dY*(5)/ds 5o = 20| Y3+ (U—H ;) G 13 Q35 G sl 1y

(4.4)
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To caleulate K(t,t,) we require the Laplace transform of the bivariate distribution

of ¢, t,, which is

(80, 8) = Gl I— G (50) G5 s (80) 11 G 5(S0) G + Gl (801U~ G p G ypg) ™1
(G Gpor+ Goor) Ziy I T— Gl y(5,) G50 (8 )1 1NGE (3,) G+ Gl(s,) g, (4.5)

where Z, ,, the k, x &, probability transition matrix for passage from the start
of one burst to the start of the next (Colquhoun & Hawkes 1982), has been defined
in (1.11)—(1.13).

It may be noted that Z, , is analogous with X, , = G _,, G, , in §2, which is
the probability transition matrix from the start of one opening to the start of the
next.

Thus, from (1.21) and (4.5)

Etyt,) = f*(s0, 82/ 080 O plsmo = Ot Yoo Loyt Yog o Uy (4.6)
Substitution of (4.2), (4.4) and (4.6) into (1.20) gives the correlation coefficient as
p(n) = @y Yy (£ =y Pv) Yo tty/0% 121, (4.7)

where
o* =0, Y, ,21—u, b)Y, u,+20,(I-H, ) "Gy Q35GCGyuy (4.8)

The characteristics of the correlation cocfficient (4.7) are rather like those of
corrclation between open times (2.7). The burst transition matrix has rows that
sum to unity (sce (1.14)), as has X, ,. Therefore Z, , has one unit eigenvalue,
A; = 1 say, the other eigenvalues being less than unity. The spectral expansion,
from (1.5), can be written as

Zyy=A+ A0+ A, A0+, 4.9)

where the matrices 4, can be found from the cigenvectors of Z , , (see 1.6). After
many transitions the initial state (in .o/) becomes irrelevant so we find that
lim (Z7, ) = A, = uy ¢, (4.10)
n-—+o0
a result analogous with that in (2.9) for open times.
The central term in the numerator ot the correlation coefficient can, from (4.9),

be written as
Z% Uy = A AP+ A A+ (4.11)

therefore the correlation coefficient will be zero if Z,, has unit rank (so
A, =A; = ... =0). In fact burst lengths will be completely independent in this
case as was found for open times. Otherwise the correlation will decay towards zero,
with increasing lag (n), as the sum of B(Z, ,)—1 geometrically decaying terms.
This result is exactly analogous with that for open times (sec (2.7)-(2.12)); thus
observations on the correlations between burst lengths can, in principle, give
information about the rank of Z_ ,, just as obscrvations on the correlation
between open times can give information about the rank of X, ,. The interpretation
of such observations is discussed below.
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Correlations between numbers of openings in bursts

The correlation coefficient between the number (r,) of openings in a burst and
the number (r,) in the nth subsequent burst (n = 1,2,...) can be calculated as

follows. P(r) = ¢ HyL(I—H ;) u,,, (4.12)

to =ty = SpI—H ;) Uy, (4.13)

E(r}) = E(r}) = ¢+ H , ,)I-H, ) *u, (4.14)

50 var(r) = ¢ (I-H,, ) "I+ H, —u,¢,)I—H, ) 'u,. (4.15)
The bivariate distribution of r,, ,, is

Plro,ry) = Hy  U—H, ) Z%  Hy (I-H,, ) u,, (4.16)

80 E(rory) = ¢o(I—H ) ' 25 ,(I-H_, ) 'u,. (4.17)

The correlation coefficient is therefore
pn)=¢,(I-H_, ) "2y ,~u,¢,)I—~H, ) 'u,/var(r), n=1. (4.18)

The central part of this equation is the same as that for the correlation of burst
lengths, so similar information about the rank of Z, , can be inferred; there will
be no correlation if R(Z , ;) = 1.

Jonnections between states and the rank of Z , ,

As in previous cases, it is possible, by inspection of the reaction scheme, to sce
what the rank of the appropriate matrix (£, in this case) will be, and hence
whether or not correlations between bursts would be expected. 1t was pointed out
in §1 that the rank of Z, , will usually be the same as the .&/-% connectivity,
CV(4,%€). As cxpected from the definitions of Z, , in (1.13), the same rank will
usually be shared also by the matrices G, Oy (OunOget G ) and
(Gyp Gps+ Ge.s). These describe the routes from the start of a burst (in &) to
its end (in %), possibly via 4, and back again to .o/.

In some cases it will be obvious that no correlation is expected, i.c. that
R(Z , ) = 1.1t is clear from the definition of Z, , in (1.13) that B(Z , ,) depends
on the rank of a &, x k, matrix so its rank cannot exceed min (k,, &y). Therefore
if there is only one open state, or only one 4 state, the rank of Z , ,, and the .&/-%
connectivity, must be 1 and no correlations between bursts will be expected (as,
for example, in figure 2, 1-6). From (1.11)—(1.13), (1.17) and (1.18) it follows that
the rank of Z_,, and the o/~%€ conncctivity will be 1, and so no correlations
between bursts will be expected if one (or more) of the following conditions is truc:
(a) if the direct o/—%# connectivity is 1, so B(Q,,4) = 1, and there are no direct
routes from o states to € states, so R(Q ) = 0 (c.g. figure 2, 8 and 12); (b) if
R(Qge) = 1 and R(Q 4) = 0 (e.g. figure 2, 15); (¢) if B(Q¢) = | and R(Qgy) =0
(c.g. figure 2, 10, 11, 13, 14 and 21); (d) if, from the third definition in (1.13),
connectivity is 1 between the burst states (6 = .o/ U %) and the € states so
R(Qze) =1 (e.g. figure 2, 21), or between shut states and open states so
RQgy)=1.

In most of the cases in figure 2 in which R(Z ) =1, one or more of the

2 Vol. 230. B
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conditions listed above is true. However, for 9 and 20, (V(&/, %) =1 and
R(Z , ;) =1 though none of the above conditions holds. In 9 deletion of the
gateway state (A,) completely disconnects o/ and €. For 20 R(Q,,,) = 0, but
R(X ) = B(H,y) = R(Q.y4) = B(Qa¢) = B(Qug) = R(Q5.,) = 2. Nevertheless,
RB(Z, ;) = 1 and the .o/—% connectivity, CV(.«/, %) = 1 because deletion of state B,
disconnects o/ and % completely. So B(G ;3 Gyy) = 1, 1.c. the equality sign in
(1.17) does not hold; and although G,, and G4, both have rank 2, their
subsections that appear in (1.13), (G4y) ¢ and (G4 /)y, Poth have rank 1. Clearly
the unit o/—% connectivity, and the lack of correlations between bursts, in this
example results from the fact that during passage from .o states to € states (and
vice versa) the system must always pass through one single state (the # state
numbered 4 in figure 2, 20); what happens after leaving state 4 must be
independent of what happenecd earlier.

5 NUMERICAL EXAMPLES OF CORRELATIONS

Consider the following scheme, with rate constants in reciprocal scconds as

shown on the arrows: .

C

5 1 ‘6
IOJ[IO()
1000
B, ==4, (5.1)
20 1 1000
104
B, WAT

This is like 15 in figure 2 (apart from connecetions within the open states, which
do not affect the presence or absence of correlations). 1t is expected (see figure 2)
to show correlations between open times and within bursts, but not between bursts.
The correlation between open times should be relatively large because (sce (2.15)),
the B, == B, interchange is not very fast, the mean lifetime of A; (0.1 ms) is much
shorter than that of A, (10 ms), but the former is more common because
¢, =10.83 0.17]. The correlations die out rather slowly (see (2.11)), the non-unit
cigenvalue, A,, of X, (and also of G4, G, ;) being 0.893. The results are shown
in table 1a.

A scheme with the same states, but different connections between them is shown
(with values for the rate constants) in (5.2). This scheme (apart from connections
within open states) is like 16 in figure 2.

Al
sy T

5 i 6
A
10 {100 10 || 104
Y
B, A, (5.2)
20 11000
y
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TABLE 1. CORRELATION COEFFICIENTS AS A FUNCTION OF THE LAG, l.

(Results are shown for (a) the example given in (5.1), and (b) the example in (5.2). The open-time
correlation is the correlation between the length of an opening and the length of the nth
subsequent opening, from (2.11) and (2.12). The shut-time correlation, from (2.17) is similar.
The open—shut correlation is that between the length of an opening and the nth subsequent shut
time, from (2.20). The correlation between burst lengths is found from (4.7), and that between
the number of openings per burst come from (4.18). Tn all of these cases the lag (column 1) is
l=mn.

For the correlations between openings within bursts, p(l) gives the correlation between the
length of the first opening in the burst and that of the nth opening in the same burst; and p(I; r)
is the same, but for bursts with exactly r openings only (tabulated up to r = 5); for both of these
cases the lag for the autocorrelation coefficient is I = n—1 (see §3). For example p(2;4) = 0.201
is the correlation between the length of the first and third openings in bursts with exactly four
openings.)

(@) The example tn (5.1)
between bursts

open and shut times burst openings
open shut  open-shut openings within bursts length  per burst
lag (7) p @) p p () p ) p ) p () p )
1 0.401 0.0020 —0.030 0.328 0.245 (r = 2) 0 0
0.284 (r = 3)
0.301 (r = 4)
0.311 (r = 5)
2 0.358 0.0018 —0.027 0.254 0.164 (r =13) 0 0
0.201 (r = 4)
0.220 (r = 5)
3 0.320 0.0016 —0.024 0.209 0.124 (r = 4) 0 0
0.156 (r = 5)
4 0.286 0.0014 —0.022 0.177 0.099 (r = 5) 0 0
5 0.255 0.0013 —0.019 0.154 — 0 0
w0 0 0 0 0 0 0 0
(b) The example in (5.2)
1 0.225 0.054 —0.115 0 0 0.265 0.254
2 0.206 0.049 —0.105 0 0 0.151 0.145
3 0.188 0.045 —0.096 0 0 0.086 0.083
4 0.172 0.041 —0.088 0 0 0.049 0.047
5 0.157 0.037 —0.080 0 0 0.028 0.027
o.o 0 0 0 0 0 0 0

This scheme will have correlations between open times and between bursts, but
not within bursts (sce figure 2).

The mean lifetimes of the open states are the same as in (5.1) though short
openings arc-less common in this case, ¢, = |0.33 0.67]. The distribution of the
number of openings per burst has components with means of 13 and 1 (see §7),
the former consisting of 10 ms openings (A,), and the latter of 0.1 ms openings.
The unit mean component has 87 %, of the area, ¢f. ¢, = [0.87 0.13). The predicted
correlations are summarized in table 15. Again the correlations between open and
shut times die out slowly; the eigenvalues of X, , are A, =1, A, = 0.914 so there
is a factor of 0.914 between successive correlation coefficients (see  (2.11)).

2-2



36 D. Colquhoun and A. G. Hawkes

Correlations between bursts are slightly larger, but die out faster; the eigenvalues
of Z, ,are A, = 1 and A, = 0.571, so there is a factor of 0.571 between successive
correlation coefficients (see (4.11)). If the intcrchange between the two € states
were faster the correlations would be smaller.

6. DISTRIBUTTIONS OF CHANNEL OPENINGS AFTER A PERTURBATION

Many sorts of experiment produce single-channel records that are not in a steady
state. This will be the case, for example, when ion channels are observed after a
sudden change in membrane potential (voltage jump) or a sudden change in agonist
concentration (concentration jump). The relevant distributions follow directly
from the approach used by Colquhoun & Hawkes (1982) as long as (@) there is only
one channel present and (b) the perturbation is applied as a step (at time ¢ = 0,
say) so that at all times greater than zero the transition rates are constant. It may
be noted that although the term equilibrium is used here, the results actually apply
to systems that are maintained in a steady state by an energy supply (Colquhoun
& Hawkes 1983).

For example, the distribution of the length of the first opening of a channel after
a voltage jump may not be the same as the usual equilibrium distribution. It will
be shown that the condition for such distributions to be the same as at equilibrium
is simply that there is no correlation between open times, etc.

We may, however, note here that it is only the relative areas of the components
of the distributions that are expected to differ from those observed at equilibrium.
In every case the time constants should be the same as at equilibrium, except for
the latencies to the first burst in (6.16) and (6.19), which will have the time
constants of the distribution of all shut periods rather than those of the
distribution of gaps between bursts.

We first consider the case where the states of the system are divided simply into
open states (/) and shut states (%), and then the case where the openings occur
in bursts.

Openings after a perturbation

The equilibrium distributions

At equilibrium the distribution of open times has a PDF

ft) = ¢ Qo (=0, ) u,, (6.1)
and the rnr for shut times (see (2.16))
ft) = 9 G s 277 Y~ Qg 5 ) Uz (6.2)

The equilibrium initial vector

The elements of the (1 x k) vector ¢, give the equilibrium probabilities that
an opening starts in each of the open states (it might, more appropriately, be
denoted ¢,(00) to emphasize its equilibrium nature). This may be calculated
(Colquhoun & Hawkes 1982, equation (3.63)) as

Py =P7(0) Qs /Px(0) Qs Uy, (6.3)
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where p 4 (00) gives the equilibrium occupancies of each of the shut states and Q4 ,
gives the transition rates from shut states to open states. This form is intuitively
reasonable; the chance that an opening starts in a particular open state will tend
to be large if either the shut state(s) that are connected to it are highly populated
(occupancies in p 4 (c0)), or if the transition rates (in Q4 ) from these shut states
to the open state in question are rapid. The (scalar) constant in the denominator
of (6.3) is present merely to ensure that the probabilities add to unity, i.e.
o,u, = 1. We may note that ¢, G, 5, in (4.2), is a (1 x k) vector that similarly
gives the equilibrium probabilities that a shut period starts in each of the k4 shut
states. This we may denote as ¢, thus

¢s = ¢0 Gd?f" (6.4)

where the subscript stands for shut. The elements of this also sum to unity because
G, 7 has rows that sum to unity, G,z uz = u,, so ¢ Uz = ¢, G zuz = 1.

The initial vector at t = 0. The equilibrium initial vector ¢, applies to the set of
times at which a channel happens to open. In the case of a perturbation applied
at ¢ = 0, the initial vector must be calculated differently. If, for example, a channel
is observed to be open at ¢ = 0 then the probability that this particular opening
starts in each of the open states (the start being defined to occur at ¢ = 0) is simply
the occupancy of each of the open states (relative to the total occupancy of open
states). Thus if the occupancies of each state at t = 0 are represented by the vector
P(0), which is partitioned into open and shut states thus

PO)=[p,40) ps0)], (6.5)
then the required initial vector, denoted ¢ _,(0) say, is
$.4/(0) =p40)/p,0)u,. (6.6)

The scalar in the denominator is just the total occupancy of all open states, which
is required to ensure that the initial vector sums to unity, i.e.

$,(0)u, =1. (6.7)

If the system is at equilibrium before the perturbation is applied then the initial
occupancies, p(0), will simply be the equilibrium ocecupancies, p(co), calculated
from the rate constants appropriate to the prejump conditions. These can be
calculated according to (1.25).

Distributions after a perturbation when the channel was open at L = 0

We wish to know the distribution of the length of the nth opening, or the nth
shut period after ¢ = (0. The definition of » when the channel happened to be open
at ¢t = 0 is illustrated in figure 3a.

The pp¥ of the length of the first opening, i.e. the latency until the first shutting
is found simply by replacing ¢, by ¢_,(0) in (6.1), giving

$.40)exp(Qu D~ Q).

Before the second opening is reached there must be a transition from open (%)
to shut (#) and back; these transitions are described by the probability transition
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Fraeure 3. The numbering of open and shut periods, and of bursts, after a perturbation at { = 0.
The numbering of open and shut times is shown in (@) and (). The numbering of bursts
and of gaps between bursts is shown in (¢) and (d). In (a) and (¢) the channel was open at

t =0; in (b) and (d) the channel was shut at t = 0.

matrix X, , = G, G5, (see (1.8)). Thus the distribution of the length of the nth
open or shut period (defined in figure 3a), given that the channel was open at{ = 0,
is given by replacing ¢, in (6.1) or (6.2) by the new initial vector

$,0) X5, n=1 (6.8)

Reduction to the equiltbrium distribution. Under certain circumstances the
distributions defined by (6.8) reduce to the usual equilibrium distributions in (6.1)
and (6.2). (¢) As would be expected, the equilibrium distribution is always
approached after a large number of transitions have occurred because the vector
in (6.8) approaches the equilibrium initial vector, ¢,, as n— co, as shown by (2.9).
(b) If the lengths of openings are uncorrelated, i.e. (X, ) = 1 as discussed in §2,
then, from (2.13), "y g n 2 (6.9)
so all open time distributions except that for the first latency will be the
same as the equilibrium distribution. Also, the distributions of all shut times,
including the first, will be the same as the equilibrium shut time distribution
because when R(X, ) =1 it will usually be true that G,z =u_¢, so
$,00G ,;=¢,=¢,G 5 (see (2.18) and (6.4)). (¢) If there is only one open
state (£, = 1), or only one shut state (ks = 1) then the durations of openings
and shuttings must be uncorrelated so the results just described under (b) will

apply.

Distributions after a perturbation when the channel was shut al { = 0

The most convenient definition of » when the channel happens to be shut at
{ = 0 is shown in figure 3b (the only difference between this and figure 3a is that
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the initial shut period, i.e. the latency to the first opening, is considered separately).
In this case we may, in analogy with (6.6), define an initial vector, ¢;(0), that
contains the relative occupancies of each shut state at { = 0. Thus

$5(0) =pz(0)/pz(0)ugs. (6.10)

The first latency. The latent period until the first opening (n = 0, figure 3b) will
have the poF

Jt) = $5(0)e27# Y~ Qs z)uz, n=0. (6.11)

All other cases. For all subsequent open and shut periods the ppF can be found
by substitution for ¢, in (6.1) and (6.2) respectively, of the new initial vector

500Gz, X5y, n=1. (6.12)

Reduction to the equilibrium distribution. The distributions defined by (6.12) will
reduce to the equilibrium distributions, (6.1) and (6.2) under the following
circumstances. (@) After many transitions (n—o0), (6.12) approaches its equi-
librium value, @, by virtue of (2.9) and (1.9). (b) If openings are uncorrelated all the
distributions, except for n = 0 in (6.11), reduce to the equilibrium distributions
by virtue of (6.9). This is the case even for n =1 because (see (2.18)) when
R(G;z ) =1wehave Gz, = uz @, 50 95(0) Gy = ¢, in (6.12). (c) If there is only
one open state, or one shut state, then openings are uncorrelated so the results just
described under (b) will apply.

Bursts after a perturbalion

We now consider the case where the states of the system are divided into subsets
o/, # and € as defined in §1.

The equilibrium initial vector

The vector ¢,,, which gives the equilibrium probabilities that (the first opening
of) a burst starts in each of the open states is defined and discussed by Colquhoun
& Hawkes (1982, equations (3.2) and (A 1.10)—~(A 1.24)). The equilibrium occu-
pancies of the various states of the system at t = 0 may be partitioned simply into
open and shut states, as already defined in (6.5}, or as

PO)=[P4(0) px0) Ppe(0)] (6.13)

We wish to define the distributions of attributes of the nth burst, or of the nth
gap-between-bursts, after £ = 0. The definition of » is illustrated in figure 3¢ for
the case where the channel was open at t = 0, and in figure 3d for the case where
the channel was shut at t = 0 (the only difference is that in the latter case the initial
shut period, i.e. the latency until the first opening, is considered separately). Two
versions of the latter case are of interest: (z) the case where the channel is simply
observed to be shut (in any & state) at { = 0 and (b) the case where the channel
is known to be in one of the € states at t = 0, so we know that we start in a ‘gap
between bursts’ (this might happen, for example, in the case of an agonist-operated
channel when no agonist is present up to ¢ = 0 so all channels are in the resting
€ state(s) until, at ¢t = 0, a low agonist concentration is applied).

A considerable number of different sorts of distributions can be defined for a
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channel that shows bursting behaviour (e.g. the number of openings per burst, the
burst length, the total open time per burst, the length of the £th opening in a burst
with » openings, ete. as described by Colquhoun & Hawkes 1982). In each caset
the expression for the equilibrium distribution starts with the equilibrium initial
vector ¢,. As in the previous case the distributions (and their means) after a
perturbation can be found by replacing ¢, in these expressions by the initial vectors
given below.

Results conditional on being open at t = 0

The distributions, conditional on the channel being open at ¢t = 0, for the nth
burst, or the nth gap between bursts (see figure 3¢), are given by replacing ¢, in
the corresponding equilibrium expression by

6,025, n=1, (6.14)

where ¢ ,(0) is as described above (see (6.6)), and Z , , is the probability transition
matrix from the start of one burst to the start of the next (see (1.13)). After
sufficient time the equilibrium distributions are approached because Z7%)
approaches u, ¢, as n— oo (see (4.10)). If bursts are uncorrelated, i.e. R(Z , ,) = 1
(see §4) then, from (4.11), Z, , = u_, ¢, so (6.14) reduces to ¢, and we obtain
the equilibrium distributions in all cases, except for n = 1. If there is only one
open state (£, = 1) then ¢_,(0) = ¢, = 1 so we get the equilibrium distribution
even for n = 1 (i.e. the latency of the first gap between bursts).

Results conditional on being shut at t = 0

If we know only that the channel is shut (in a Z state or a € state) at £ = 0 an
initial vector can be defined, as in (6.10), to give the relative occupancies of cach
shut state at ¢t = 0, namely ¢4(0) = p4(0)/pz(0) uy.

The first latency. The distribution of the latency to the start of the first burst

n = () in figure 3d) 18
( gure 3d) ISy (0)e@rrl(— Q) uy, =0, (6.15)

just as for the simple open—shut case (6.11).

All other cases. The distributions, conditional on the channel being shut at ¢ = 0,
for the nth burst, or the nth gap between bursts (defined in figure 3d), are found
by replacing ¢, in the corresponding equilibrium expression by

950)Gsy 255 n21. (6.16)

After sufficient time the equilibrium distributions are approached because 277}
approaches u_ ¢, as n—~>oco, and G, u, = ugy (see (1.9) and (4.10)). When the
bursts are uncorrelated so B(Z, ,) = land Z, , = u_, ¢,, (6.16) reduces to ¢, for
n 2z 2. However, for the first burst and gap (n = 1 in figure 3d), (6.16) will reduce
to ¢, only if B(G,,)=1 so openings are uncorrelated also; in this case
Gy, = Uz ¢, = Uz ¢, as used above (see (2.18)). Note that, although uncorrelated
openings imply uncorrelated bursts, the converse is not necessarily true.

T The final form of the distribution of gaps between bursts is given by Colquhoun & Hawkes
(1982, equation (3.85)) in a form that starts with a vector denoted y,. However, comparison

of their equations (3.82) and (3.83) shows that w, = ,(I— H_, ,) '(—Q%,), so this distribution
too can be written starting with ¢,,.
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Results conditional on being in € at t =0

In this case the relative occupancies at t = () are given (see (6.13)) by

$4(0) = py(0)/Py(0) ug. (6.17)

The first latency. The pDF of the latency to the start of the first burst (n = 0 in
figure 3d) will have Laplace transform

J*(8) = 0 (0) = Gy(s) G ()] G54(8) GG () + GE () Ny (6.18)

(this follows from the principles used to derive the distribution of gaps between
bursts, equation (3.82) in Colquhoun & Hawkes (1982), but in this case there is
no possibility of an initial silent period in #). The inverse of this gives the required
PDF, which can be shown to be

ft) = 940)[Prg(D)gsr Qzptty (n=0). (6.19)

The expression in square brackets is the ‘6% * subsection (i.e. the last kg, rows)
of Py, (t) = exp(Qu4t). This is an intuitively reasonable form to describe a
sojourn in % that starts in € and eventually exits from any % state to .«/.

All other cases. The distributions, conditional on the channel being in € at t = 0,
for the nth burst, or gap between bursts, are given when n 2 1 (see figure 3d) by
replacing ¢, in the corresponding equilibrium expressions by

94(0) G%(@)&/ Zyg n=1, (6.20)

where Gy 4, was defined in (1.12). The equilibrium distribution will be approached
when n-> 00, as before (see (6.14), (4.10) and (1.14)). When bursts are uncorrelated,
so R(Z ;) = R(Gg4)4) = 1, (6.20) will become @), so that the distributions (for
n = 1) will become identical with the equilibrium distributions, because in this case

Z 4 = Uy Py, and G%(ga)&/ = Uy P,

The first latency distribution when there are N channels present

Under conditions where there are no correlations, so that it is predicted that all
distributions will be the same regardless of »n, the distributions of open-time and
of ‘within-burst’ characteristics should be close to the distributions given above
even when there are several channels rather than just one as was assumed in all
the foregoing results. However, only in the case of the first latency have we
obtained exact results.

The distribution of the first latency for one channel, given above, can easily be
generalized to take account of the presence of any number, N say, of channels,
as long as the channels behave independently of one another. Define f,(f) as the
pDF of the first latency for a single channel, and fy () as the pDF of the first latency
when N independent channels are present. Various sorts of first latency
distributions have been defined above, but all of them have the general form

L) = Za e, (6.21)

where 2 a; = 1. The number of components, the areas (a;) and the rates (A;) will
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depend on the particular problem. Thus the probability that the latency is greater
than ¢, for one channel, is

P(latency > t) = 1 - F|(t) = f IAGLA
¢

= 2 azetd (6.22)

where F(t) is the distribution funection for the first latency for one channel. When
N independent channels are present, the observed first latency will be greater than
¢ if the first latencies for all ¥ individual channels are greater than ¢ so

P(all N latencies > t) = 1 — Fy(t) = [1— F,(H)]V. (6.23)
This expression was used by Aldrich et al. (1983). The required roF, the derivative
of Fiy(®). s thus Flt) = M= B@P 0. (6.24)

The case of a single exponential. 1f the distribution of first latency for one channel
(6.21) has only one exponential component so it has the form f,(f) = Ae~ %, with
mean 7 = 1/A, then (6.24) becomes

fn(t) = NAeNAL, (6.25)

This is a simple exponential distribution with mean 1/NA = 7/N, so the mean
latency is reduced by a factor of N, compared with that for one channel.

The case of two exponentials. When f,(t) has the form a, A, e~ M+ a, A, e ! (where
A, > A,, say) the mean first latency is g, = a,7,+a,7, for one channel. The
distribution for N channels follows from (6.24); the mean first latency, 4y, from
the binomial expansion, is NN AN g

ﬂN=Z()~—L~L~. (6.26)
reo \TJ(N=7) A 474,
The meaning of this result may be illustrated by the first term, which is ¢&¥/NA,.
A fraction of al¥ of all observed first latencies will be such that the latency for each
of the N channels is of the short type (mean 7, = 1/A,); the mean latency for these
will be 1/NA, = 7,/N. If A, » A, this term will predominate, i.e. the observed
latency will be largely dictated by the shorter time constant.

Numerical example of distributions after a concentration jump

This example is based on 6 in figure 2, and using the rate constants suggested
by Colquhoun & Sakmann (198s) in their attempt to fit observations made with
suberyldicholine on frog end-plate channels. The scheme is thus:

5 R

2410 57!

07271 %
R =——= AR* 1 (6.27)

4 A
6250 57!
j 2410 57! j [0.01 7!
A

18000 s~*

3 AR A, R* 2

——
625 571
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where A denotes agonist, and the receptor channel is denoted R (shut) and R*
(open). All the association rate constants were taken as 1.6 x 108 m™! §71. Calcula-
tions have been done on the distributions expected following a jump in concen-
tration of agonist from zero to 4 nm. The initial state is therefore that all channels
are in state 5 before t = 0. There is no correlation between bursts in this case (see
§4) so all the burst distributions are identical wherever they occur after the
concentration jump; they are the equilibrium distributions (some of which are
given by Colquhoun & Sakmann 1985). The only exception is the distribution of
the shut time up to start of the first burst (the first latency), which is the same
as that given in table 2 for the latency to the first opening.

Open times are correlated for (6.27), so the distributions of open and shut times
will depend on where they occur after the concentration jump. In this case
p(1) = 0.073 for open times, 0.175 for shut times and —0.166 for the open—shut
correlation. The distributions are summarized in table 2, which gives the area for
each component of (a) the open-time distribution and (6) the shut-time distribution
for the nth event (see figure 2a) following the concentration jump. All channels
are in the resting state at { = 0 so the distributions conditional on being shut are
t = 0 are the only relevant ones (see (6.10)—(6.12)).

The initial vectors are also shown in table 2. They give, for the open-time
distributions, the probability that the »th opening starts in each of the open states

TABLE 2. OPEN- AND SHUT-TIME DISTRIBUTIONS FOLLOWING A CONCENTRATION
JUMP FROM 0 TO 4 nM, FOR THE SCHEME IN (6.27).

(The numbering, n, of the openings and shuttings is as in figure 3(b) because the channel must
be shut at ¢ = 0. The initial vector gives the probability that an interval starts in the specified
state. See text for details.)

(a) Open-time distribution

initial vector area

n | 2 7=0.16 ms 7=1.6ms

1 0.588 0.412 0.588 0412

2 0.397 0.603 0.397 0.603

3 0.308 0.692 0.308 0.692

4 0.267 0.733 0.267 0.733

5 0.248 0.752 0.248 0.752

6 0.239 0.761 0.239 0.761

© 0.232 0.768 0.231 0.769

(b) Shut-time distribution
initial vector area

n 3 4 5 7=43.8us 7=0415ms 7 = 1538.8 s
0 0 0 1 0 0 1
1 0.412 0.588 0 0.325 0.0004 0.675
2 0.603 0.397 0 0.476 0.0003 0.524
3 0.692 0.308 0 0.546 0.0003 0.454
4 0.733 0.267 0 0.578 0.0002 0.422
5 0.752 0.248 0 0.593 0.0002 0.407
6 0.761 0.239 0 0.600 0.0002 0.400
© 0.768 0.232 0 0.606 0.0002 0.394
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(states 1 and 2), namely ¢,(0) G, , X%-1 from (6.1) and (6.12). For the shut-time
distributions the initial vector gives the probability that the nth shut time starts
in each of the shut states (states 3, 4 and 5); from (6.2), (6.11) and (6.12) this is
seen to be @z (0) Gy, X% 2G5 = $5(0)(Gp y G 5)". At t = 0 all channels are in
state 580 ¢4(0) = [0 O 1]. Thereafter the initial vector approaches its equilibrium
value, as described above.

The open-time distributions show far more ‘short openings’ just after the
jump than at equilibrium ; this is to be expected because after leaving R (state 5)
at t = 0 it is necessary to pass through AR (state 4), from which short openings
can originate directly, before any other states are reached. There is, in this
example, little interchange between the two open states so the time constants of
the open-time distribution (0.16 and 1.6 ms) are close to the mean lifetimes of AR*
and A, R¥, respectively, and the relative frequencies (areas) in the distribution are
close to the probabilities, in the initial vector, that an opening starts in each of
these states. Also the probability that an opening starts in A, R* (state 2) is very
close to the probability that a shut period starts in A, R (state 3).

The shut-time distribution shows a first latency that consists almost entirely of
the slowest component of the shut-time distribution (7 = 1538.8 8); it is virtually
a single exponential so (6.25) would apply if there were more than one channel
present. Shut periods after the first must start in A, R or AR (states 3 and 4). The
former becomes more common as the equilibrium occupancy of doubly occupied
channels is approached, when 76.8 %, of shut periods start with an A,R*—> A, R
transition (as shown by the initial vector in table 2), and brief shut periods (spent
mainly in A, R} become concomitantly more common than they were near ¢ = 0.

7. COMPONENTS WITH ZERO AREA IN THE DISTRIBUTION OF THUY
NUMBER OF OPENINGS PER BURST

In principle, the distribution of the number of openings per burst has a number
of geometric components equal to the number of open states, &k, (Colquhoun &
Hawkes 1982). However, in some circumstances there may be fewer components
than this because the areas of some components (which have unit mean) may be
zero. Thus the existence or non-existence of a discrepancy between the number
of components in this distribution, and the number of exponential components in
the distribution of open times (or, often more unambiguously, in the distribution of
the total open time per burst) which should also both be £, may give clues about
mechanisms (see, for example, Jackson et al. 1983 ; Colquhoun & Sakmann 1985).

Distribution of the number of openings per burst
The probability of observing » openings per burst was given by Colquhoun &
Hawkes (1982, equations (3.5) and (3.9)) as

Pr)=¢,H,,(I-H, )u,,
Koy
= 2 a,(l—A,)A r=1,2,.., (7.1)
m=1

where A,, denotes the eigenvaluesof H , , = G,,, G, , and a,, represents the area
of each of the k_, geometric components that we have written explicitly in the
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second form above (for which see Colquhoun & Sigworth 1983, equation (64)). The
“mean number of openings per burst’, g, , for each component (analogous with the
time constants for exponentials) is

o = 1/ (L=Ay), (7.2)
and the overall mean, which can be written as the weighted mean of the g, is

k.,
SoI—H,, )ty = S i, (7.3)

m=1
The areas, a,,, of the components can be written in terms of 4,,, the spectral
expansion matrices for H, , (see (1.5)), as

Uy = Py Ay Uy (7.4)
Components with wnit mean

If H,, has less than full rank (i.e. rank less than k), then some of its
eigenvalues will be zero and, from (7.2), for each such eigenvalue there is a
component with mean x4 = 1. We therefore expect to see an ‘excess’ of isolated
openings (i.e. of bursts that contain only one opening). The physical significance
of this is discussed further below. The number of zero eigenvalues will generally
be equal to k_,—R(H , ), the nullity of H , , (see §1). Even when there is more
than one zero eigenvalue the usual spectral expansion appears to hold, and Jordan
forms are not needed (we have, so far, no general proof of this proposition).

In certain cases the area for the component(s) with unit mean is predicted to
be zero so the unit mean component will #ot be seen, and the number of components
will be less than k_, in principle (for any mechanism it is, of course, always possible
that some components may be too small to be detectable in practice).

The physical significance of the excess of isolated openings is that they consist
of a transition from a € state to an .o/ state and then back to a € state (a direct
return to € will end the burst); this component will be absent (have zero area)
whenever there are no direct routes from the of states to the € states (so
Q .« = 0) as in the examples in figure 2, schemes 4, 8 and 12. When direct routes
from &/ to € do exist then a component with g = 1 may be apparent. For example,
in figure 2 many schemes (2, 3,5,7, 13, 14, 16—-18 and 23), which have .&/—¥ routes,
do show such a component. However, 1, 9-11, 21 and 22 in figure 2, which also
have &/—% routes, nevertheless have zero area for the g = 1 component. The precise
conditions under which the component with unit mean appears are considered
below, after some examples have been discussed.

Three simple cases

The foregoing argument can be illustrated by comparison of the three simple
schemes shown in figure 2, 1-3. These are reproduced here for convenience,

¢, ¢, ¢,
) ) i\
B==A, A, B,=A,

! i i

A, B,== A, A,
1 2 3
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All of these schemes have two open states (k, = 2), but the direct connectivity
between o/ and £ is DV(o/, %) =1 so R(H_,_,) = 1 for all of them (it cannot be
larger because k, = 1). Therefore all three will have a component with unit mean
(# = 1) in the distribution of the number of openings per burst. In addition all three
schemes have direct routes from &/ and €. However, 1 has R(X_, ) = 1; there is
a single gateway state, A,, between open (&) and shut (%) states, whereas 2 and
3 both have CV(&, %) = 2 so for both R(X, ) = 2. Also, 1 has zero area for the
component with unit mean whereas 2 and 3 have not.

It will be useful in discussion of these examples to use the transition probability
m;;, which gives the probability that a channel in state i moves next to state j
(regardless of how long elapses before the transition occurs) as

My = qz‘j/(“‘%i)- (7.5)

(The G matrices are generalizations of such transition probabilities that are used
when subsets of states rather than single states are involved.) The denominator
in (7.5) is simply the sum of all rate constants for exit from state 3.

A numerical example for 1

Suppose that the rate constants in 1 are ¢, =500s71 ¢, =50s71,
¢13 = 2000 871, g5, = 20000 871, ¢,, = 2500 571, g,; = 1000 s71, then the mean life-
times of stays in individual states are 20 ms for C,, 50 ps for B, 0.2 ms for A, and
1 ms for A,. An average opening will contain one (equivalent to ¢,,/(q;5+¢14))
sojourn in A, and therefore two sojourns in A, ; the mean length of a single opening
is therefore 1.4 ms. The components of the distribution of the number of openings
per burst have means of , = 5 and y, = 1, from (7.2); i.e. the eigenvalues of H ,,
are A; = q,3/(¢13+9,4) = 0.8, and A, = 0 because (A,+A7,) =Tr(H,_ ) = 0.8 and
A, A, =det (H,, ) = 0. We find that

0.8 08 0
Gyp= [0.8]’ Gyy =11 0], Hyy= [0.8 O]’ (7.6)
and, because A, =0, H,, = A, A, so
10 0 0
AIZHMM/’\=[1 O]; A2=I——A1=[_1 1]. (7.7)

All bursts must start in state 1 so ¢, =[1 0]. Thus the areas of the two
components in the distribution of the number of openings per burst, from (7.4),
are a, = 1, a, = 0. In other words, there will be only a single geometric component
with a mean of five openings per burst. The existence of two open states would
be indetectable from this distribution. However, the distribution of open times
has, in this case, two quite clear components, with time constants of 2.22 ms
(69.8% of area) and 0.18 ms (40.2 %, of area). These values are not surprising as
509% of openings consist of a single sojourn in A, (with mean length 0.2 ms).
Openings (and hence also bursts) are uncorrelated because B(X_, ;) = 1 so all open
times, wherever they occur in a burst, will have the same distribution.
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A numerical example for 2

The foregoing results may be contrasted with those for 2 with ¢,, = 3500 s71,
G = D087, gy = 736.8 877, ¢y, = 20000 571, ¢, = 1500 871, ¢y, = 263.2 571, The
mean lifetimes are therefore 20 ms for C,, 50 ps for B,, 0.2 ms for A and 1 ms for
A,, as in the previous example. Because R(X , ;) = 2 openings will be correlated
(sce below); the overall mean length of a single opening is 0.871 ms. The
components of the distribution of the number of openings per burst will, as in the
previous case, have means of g, =5 and p, =1 (where u, = 14+q,,/(q,, 7,,)).
My = G1a/ Q12+ 1), i.€. the eigenvalues of H , , are again A, =0.8, A, =0.
However, in this case the component with g, = 1 has not got zero arca, but 709
of the area. We have a, = m,, = 0.7; i.e. the arca for the unit mean component is
simply the probability that a channel in state A, will, at its next transition, go
back to €, rather than proceeding to A,. More formally, the matrices involved are
as follows.

0.24 0 0.24
G,ym = [0.8 :la G?ZM ={0 1], H;/,yf = [0 0.8 ]»
0 03 1 —-03
a=[0 0] [l 09 o)

Again ¢, =[1 0] so, from (7.4), the areas arc a, = 0.3, a, = 0.7, as stated
above. The component with unit mean is very prominent; 76 %, of all bursts have
only one opening.

In this case R(X ) = 2 so open times are correlated. We find that

0.76 0.24}

X,, = .
i [0.20 0.80 (7.9)

with cigenvalues of 1 and 0.56. From (2.11) we find the correlation coefficients to
be p(1) = 0.083; p(2) = 0.046, p(3) = 0.026, .... As expected from (2.11) they decay
in a simple geometric fashion with a ratio of 0.56 between successive values. The
correlations (if there is only one channel) between shut times, from (2.17), arc
p(1) = 0.197, p(2) = 0.110, p(3) = 0.062, .. . ; and the open—shut correlations, from
(2.20)arc p(1) = —0.171, p(2) = —0.096, p(3) = —0.054, .... There is no correlation
within or between bursts because BR(H,, ) =1 and R(Z , ,) = 1.

The distribution of open times has time constants of 0.196 ms and 1.11 ms, quite
close to the mean lifetimes of the two open states A| and A, (namely 0.2 and 1 ms).
However, as expected from the correlation between open times, the relative arcas
of these components will depend on the position of the opening in a burst. As might
be expected from the discussion above, bursts with only one opening consist
predominantly of a single sojourn in A, (mean life 0.2 ms); and the distribution
of the open time in such bursts has 88.3 % of the area for the component with
7 = 0.196 ms. For bursts with more than one opening it is necessary, at the start
of the burst, to pass through both A, and A, to reach B, (the gap-within-burst
state), and to reverse this route to return to C, at the end of the burst. The first
and last opening of any burst with more than one opening will have a distribution
quite close to that expected for the sum of lengths of a sojourn in A, and in A,,.
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The mean of this distribution would clearly be 1.2 ms, and the probability density
function would have (sce, for example, Colquhoun & Hawkes 1983, pp. 165-167)

time constants of 1 ms (area = 1.25) and 0.2 (arca = —0.25). This is quite close to
the actual calculated distribution, which has arca = 1.22 for 7 = 1.11 ms, and
arca = —0.22 for 7 = 0.196 ms. The mean is 1.303 ms (longer than 1.2 ms because

in a fraction 0.079 = m,, 7, of cases there will be A, ~ A, - A, oscillations before
recaching B,). This distribution goes through a peak; short durations will be rare
because it is necessary to pass through both open states at the beginning and end
of a burst. Openings other than the first and last in a burst will rarely get back
to A, and 99.69% of the area is for the 7 =1.11 ms component. The overall
distribution of open times has 74 9, of the area for the 7 = 1.11 ms component
(overall mean = 0.870 ms).

If the channel ever penetrates beyond A, to reach A, then it will probably
oscillate several times between A, and B,, so producing the component with many
openings per burst.

A numerical example for 3

By suitable choice of rate constants, the distribution of the number of openings
per burst can be made the same as in the last example. Take gq,, = 3800 57!,
Gy =508 g, =12008"1 ¢, = 52632571, ¢, =14736.8s71, ¢,, = 1000 s71,
These rates give mean lifetimes for C,, B,, A;, A, 0of 20 ms, 50 ps, 0.2 ms and 1 ms,
cxactly as in the last two examples.

The components of the distribution of the number of openings per burst will
again have means u, =05, p,=1, ie. A, =08, A,=0. In this case
A, =g Mg+ 7y, = 1—my, m,. As in the previous example the component with
one opening per burst (#, = 1) accounts for 709 of the arca of the distribution
(@, =0.7,a, =1—a, =m,/A; = 0.3). Again76 %, (= 1 —m,,) of all bursts have only
one opening. Thus, in this particular case the distribution of the number of
openings per burst is identical with that for 2.

The distribution of open times is not greatly different from the last example
cither. The time constants in this case are exactly 1 ms and 0.2 ms, i.e. the mean
lifetimes of the two open states (there is no direct communication between the two
open states in this example, so cach observed opening consists of a single sojourn
in one or the other open state). The overall distribution of open times has 59.8 %,
of the area for the 0.2 ms component (rather more than in the last case), and 40.2 9,
for the 1 ms component. The correlation between open times is rather stronger than
in the last case, p(1) = 0.15, though it decays at the same rate. The correlation
{for one channel) between shut times is p(1) = 0.20, and between an open time and
the following shut time, p(1) = —0.23. However, the burst structure is quite
distinctive in the present case. Clearly bursts that have cither one or two openings
must consist entirely of sojourns in A, (mean length 0.2 ms), as must the first and
last opening of any burst, so 1009, of the area is associated with the 7 = 0.2 ms
component for all such openings; they are simple exponential distributions (quite
unlike the last example where the distributions went through a peak). Openings
other than the first and last in the burst would not be so distinctive (92 9% of arca
for 7 = 1 ms, 8%, for 7 = 0.2 ms).
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In this case it is again obviously the C,— A, - C, transitions that mainly give
rise to the isolated openings; if the channel penctrates as far as B, it is likely to
oscillate several times between B, and A, before returning to the resting state, so
giving rise to a component with many openings per burst.

A conjecture

It seems, from the discussion above, that a component with unit mean occurs
when R(X , ) > R(H_, ), and we suspect (but have not rigorously proved) that
this is a general result. This happens when the connectivity between & and &
(= # U %) is greater than the direct connectivity between ./ and 4 (see §1). For
this to happen there must be a state in o/ that (a) is connected to € and (b) is
not a direct gateway state (as defined in §1) between .7 and #. For example, in
scheme 3 of figure 2 state A is connected to €, but it is not a direct o/—# gateway
state so the component with unit mean is seen, but in scheme 1 of figure 2 state
A, is a direct o/—% gateway state and the component is not seen. Similarly, the
unit mean component is seen in 23 (A, and A, are connected to € but A, is not
a direct o/—% gateway state, though state A, is), but not in scheme 22 (states A,
and A; are connected to €, but both are direct .&/-% gateway states).

sonversely, the area for a component with unit mean will be zero if either (a)
there is no direct route from &/ to € (Q ,, =0, DV(,€) = 0) or (b) if there are
direct routes from o7 to € but cach such route has an of state as its direct gateway
state and this state is also a direct gateway state between o7 states and 4 states
(as well as between &7 states and € states). These conditions are exactly those
which cnsure that the rank of X, , is the same as the rank of H , ,, i.c. that
(usually) the rank of Q ,; is the same as the rank of Q.

An example of the argument is provided by the scheme 21 in figure 2 in which
Q ., 7 has the form

4 5 6,7 8 9
x 0 0,0 0 O]t
1
Qus=1Qus Quel=|x 0 Xt ox 0 xi2 (7.10)
x 0 0V 0 0 o013

The partition of Q5 into Q_, and 4 ., is shown by the dashed line; an x
element represents any non-zero rate (i.e. a route exists) and a 0 element indicates
that no route exists. The state numbers are shown in the margins. Note that the
direet connectivity between .of and & is DV(.o/, #) = 2, the dircet gateway states
being A,, B, and B;. Deletion of two of these states (2,4 or 4, 6) scparates of and
% completely, and deletion of the corresponding rows/columns in (7.10) leaves only
zeros in @, If we choose to delete row 2 and column 4 then we are also left with
zeros in Q. (because state A, is the one direct o/—€ gateway as well as being one
of the direct o/-%# gateway states). Thus there are only zeros left in the whole of
0,7 removal of states 2 and 4 (the two o/—F gateway states) also scparates .of
and # completely. Thus R(Q ;) = R(Q,,5) = 2 and the component with g = 1
in the distribution of the number of openings per burst will have zero area.
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Discussion
Correlations

The existence of a ‘gateway’ through which the channel must pass during
passage from ‘open’ to ‘shut’ (in the sensec that deletion of a state disconnects
open and shut states so the open—shut connectivity is 1) ensures that the durations
of individual openings are uncorrelated; indeed it ensures that they are totally
independent. Shut times are likewise uncorrelated, as are the durations of an
opening and the duration of subsequent shuttings. The results of Fredkin et al.
(1985) have been extended here to correlations between open times within a burst,
and to correlations between burst lengths. Analogous rules concerning connectivity
and gateway states are given for the latter cases.

Several groups have detected correlations in their data. Jackson et al. (1983)
measured, essentially, an approximation to the correlation between the first and
second apparent openings in a burst with acetylcholine (ACh) in cultured rat
muscle. Labarca ef al. (1985) reported correlation between apparent open times
in reconstituted Torpedo ACh receptor channels. And Colquhoun & Sakmann
(1985), working with frog end plate, found correlations between the lengths of
apparent openings, and between the lengths of the first and sccond apparent
opening in a burst. However, Colquhoun & Sakmann could detect no correlations
between burst lengths; the comparison with the other work mentioned is made
difficult because the resolution in Jackson et al. (1983) and Labarca et al. (1985)
was 0.7-1 ms whereas in Colquhoun & Sakmann the resolution was 30-70 ps, so
that what the former authors refer to as openings the latter would describe as
bursts.

The qualitative existence of a correlation provides evidence for there being more
than one pathway between the relevant subsets of states. In principle, the form
of the decay of the correlation with increasing lag should tell us the number of such
pathways, but problems caused by limited time resolution, and an unknown
number of channels, have so far inhibited (wisely) any attempt to use correlations
in such a quantitative way.

Negative correlations between the length of an opening and that of the following
shut period have been detected by McManus et al. (1985). They did not calculate
correlation coefficients, but rather the mean duration of all open intervals adjacent
to shut intervals within a specified range of durations was plotted against the mean
duration of the specified shut intervals; a clear relationship was found for both
a chloride and a potassium channel. On the other hand, Colquhoun & Sakmann
(1985) found nothing distinctive about the openings that border intermediate gaps
within bursts. Clearly inspection of the actual structure of the sequence of open
and shut times may give information about the way in which states are connected
that is complementary to that found by measurement of correlation cocfficients,
and the other methods discussed here (as illustrated by the examples in §7, for
instance).

The problem of the extent to which different reaction schemes can be distin-
guished from each other on the basis of experimental data is a complex one (even
for ideal data). A start on the problem has been made by Fredkin et al. (1985) and
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Fredkin & Rice (1986), but much remains to be done. The difficulties are well
iltustrated by the work of Horn & Vandenberg (1984) who used a full maximum
likelihood analysis (which implicitly takes into account all information about
correlations), and found that with real experimental data many reaction schemes
were not clearly distinguishable.

Single channel events after a perturbation

There are many published results on, for example, the activation of sodium
channels or of calcium channels following a voltage jump, or of ACh-activated
channels after a concentration jump (see, for example, Chabala et al. 1985).
However, we are not aware of any cases where differences in distributions for the
first, second cte. opening have been investigated. The results given here show that
substantial differences in the distributions (in the arcas, rather than the time
constants) may occur under certain circumstances. It is, however, shown here that
no such differences are expected under conditions where events are uncorrelated.

Mussing components in the distribution of the number of openings per burst

It is shown here that under certain circumstances the number of geometric
components may, in principle, be less than the number of open states. The
conditions under which a component with unit mean does, or does not, appear in
this distribution are discussed; as with the appearance of correlations, these
conditions depend on the nature of the connections between the various states of
the system. This method was used by Colquhoun & Sakmann (1985) to rule out
certain reaction schemes; in faet in their case the information inferred in this way
was clearer than that inferred from the measurement of correlations.

This work was supported by the M.R.C. We are grateful to Dr J. H. Steinbach
for helpful discussions.
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